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ABSTRACT

In this dissertation the concept of spectral clustering will be examined. We will

start by discussing biclustering of images via spectral clustering and give a justification

for this technique by analogy to vibrational problems that is independent of that given

by relaxation of a combinatorial optimization problem. The importance in clustering

of the Fiedler vector and some theorems by Fiedler are emphasized. We will extend

Fiedlers theorem to the case of the generalized eigenvalue problem.

By examining the application of these theories to the clustering problem we hope

to develop a better understanding of the eigenfunctions and their use in clustering.

Practical problems with clustering that occur due to construction of edge weights are

studied.

Courants Nodal Domains Theorem (CNLT) as an analog of the Fiedler vector for

eigenvectors of higher dimension are studied and the literature for discrete CNLTs

are reviewed. A new definition for r-weak sign graphs is presented and a modified

discrete CNLT theorem for r-weak sign graphs is introduced. The application of these

to spectral clustering is discussed.

The discussion of spectral clustering is continued via an examination of clustering

on DNA micro arrays. This allows us to develop an algorithm for successive biclus-

tering. In this we develop a new technique and theorem for dealing with disconnected

graph components. All of this is incorporated in new MATLAB software. Results of

clustering using real micro array data is presented.

The last section deals with the software package Block Locally Optimal Precondi-



tioned Eigenvalue Xolver (BLOPEX) which as part of the Authors graduate work was

upgraded to Version 1.1. BLOPEX implements the Locally Optimal BLock Precon-

ditioned Conjugate Gradient (LOBPCG) method for solution of very large, sparse,

symmetric (or Hermitian) generalized eigenvalue problems.

Version 1.1 of BLOPEX adds (amongst other things) support for complex ma-

trices and 64bit integers. BLOPEX provides interfaces to independently developed

software packages such as PETSc and Hypre which provide high quality precondition-

ers and parallel MPI-based processing support. There is also support for execution

of BLOPEX from MATLAB and stand alone C programs. This was a multi person

effort. The Authors contribution was in recoding the abstract routines and PETSc

and Hypre interfaces for the new functionality, the development of a new complex

driver test program, and aid and assistance in testing, debugging and documentation

of all interfaces.

We will describe the BLOPEX software, design decisions, the LOBPCG algorithm

as implemented, and all of the various interfaces. Some numerical results will be

presented.

The form and content of this abstract are approved. I recommend its publication.

Approved: Andrew Knyazev
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1. Spectral Clustering and Image Segmentation

1.1 Introduction

We are concerned with the problem of partitioning an image into two parts (a

bicluster) with the objective that the elements (image pixels) within each part are

more similar to each other than elements between parts tend to be. This statement

while simple has left undefined such concepts as similarity and measures of whether

any particular bicluster is better than another.

There is a large literature which takes the approach of defining this problem

as a biclustering of a weighted graph where the biclustering is performed by mini-

mization of some vertex cut function; for example see [53],[56]. These problems can

be expressed as a minimization under constraints of the Rayleigh-Ritz ratio of the

associated graph Laplacian matrix.

This combinatorial problem is NP complete and to solve it the constraints are

relaxed, leading to a problem of solving for an eigenvector of the second largest

eigenvalue of the graph Laplacian, commonly referred to as the Fiedler Vector. Then

this eigenvector is used to separate the graphs vertices into two groups. This is the

technique of spectral clustering. We will discuss the graph Laplacian in Section 1.2

which is background for the rest of the paper.

Bichot [6] attributes the origin of spectral clustering to Donath and Hoffman [20]

1970. The concept is simple. Its complexity lies in understanding why it works.

Spectral clustering does not always give good solutions to the original combina-

torial problem. We examine some of these issues in Section 1.3 and will present an

alternative justification for spectral clustering in Section 1.5.

But, before this will give a brief overview of the literature in Section 1.4 which

examines the field of combinatorial and spectral clustering.

Spectral clustering involves using the Fiedler vector to create a bipartition of

the graph. Some theorems by Fiedler are needed to understand the character of the
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Fiedler vector and how this relates to clustering. These theorems are reviewed in

Section 1.6 and we expand the scope of one of these theorems in Section 1.7.

Having expanded the scope of the Theorems we examine numerical results for the

generalized eigenvalue problem using mass matrices.

We then examine the problem of image segmentation in Section 1.9 and discuss

generation of edge weights in Section 1.10.

We define our algorithm for image biclustering in Section 1.11. Then in Sec-

tion 1.12 give examples of how weight parameters can effect clustering, connect this

with the Fiedler theorems, and show how problems can occur.

This is followed in Section 1.13 by a discussion of eigenvalue solvers and the need

for solvers for eigenpairs of large sparse matrices for the image segmentation problems.

Nodal sets and sign graph theory is reviewed in Section 1.14 where we derive an

extension of the discrete nodal domain theorem that includes Fiedlers theorem as a

special case.

We summarize in the last section.

1.2 Graph Laplacian

Let G = (V,E) denote a graph where V is its vertex set, E is its edge set, and

the number of vertices |V | = n. We number the vertices of G and this index is then

used to represent the vertices V . The edges of G are undirected and have no loops.

The n x n adjacency matrix A of G has entries representing the edges E of G.

If vertices i and j have an edge between them then the element aij of A has a real

positive weight assigned to that edge and zero otherwise. The degree matrix D for G

is a diagonal matrix where dii =
∑

j∈V aij.

Definition 1.1 The unnormalized graph Laplacian is L = D − A.

This is the discrete analog of the continuous Laplacian 4 =
∑

i
∂
∂xi

. A justifica-

tion for this can be found in [4].

2



The discrete Laplacian has the following properties [56]:

• it is real symmetric,

• positive semi definite,

• its smallest eigenvalue is 0,

• I = (1, 1, . . . , 1)T is an eigenvector for eigenvalue 0, and

• the multiplicity of 0 is the number of connected components of the graph.

We note here the existence of normalized graph Laplacians, and will have more

to say about them later.

Definition 1.2 The symmetric normalized graph Laplacian is Lsym = D−
1
2LD−

1
2 .

Definition 1.3 The random walk graph Laplacian is Lrw = D−1L.

1.3 Combinatorial Model

One approach to clustering is to minimize some function that reflects how closely

the clusters are connected. For example in Figure 1.1 vertex cuts are used to partition

the graph into two subgraphs A and B where |A| + |B| = |V |. A cut is assigned a

value cut(A,B) =
∑

i∈A,j∈B aij. This is unsatisfactory in many cases where subgraphs

that are highly unbalanced are produced. For example Cut 1 in Figure 1.1 has the

same cut value as that of Cut 2.

To overcome this the following ratios are often used [53],[56].

Ratiocut(A,B) =
cut(A,B)

|A|
+
cut(A,B)

|B|

and

Ncut(A,B) =
cut(A,B)

vol(A)
+
cut(A,B)

vol(B)
where vol(A) =

∑
i∈A

dii

3



Figure 1.1: Partition of a Graph by Vertex Cuts. All edge weights are equal.

Assuming the graph is connected (more on this in Section 1.6), it can be shown

[56] that minimizing the Ratiocut is equivalent to

min
A⊂V
f⊥I

‖f‖=
√
n

f ′Lf where fi =

 |B|/|A| if i ∈ A

−|A|/|B| if i ∈ B

where we will refer to f as the combinatorial solution.

This problem is NP complete (see Appendix of [53]), but if the constraints are

relaxed it becomes

min
f∈Rn

f⊥I
‖f‖=

√
n

f ′Lf

The term f ′Lf is the numerator of the Rayleigh-Ritz Ratio and the Rayleigh Ritz

characterization of eigenvalues [37] gives the solution as the 2nd smallest eigenvalue

of L with f as its eigenvector. An eigenvector of the 2nd smallest eigenvalue (which

could have multiplicity greater than 1) is called the Fiedler vector.

A similar analysis can be performed for Ncut [53].

A spectral clustering analysis then consists of finding the Fiedler vector and using

it to produce the clusters A and B. Commonly, these are chosen as A = {i|fi ≥ 0}
4



and B = {i|fi < 0}. This method is derived by analogy to the combinatorial solution

of f .

There are some questions that can be raised at this point.

• How closely does the relaxed solution come to the actual solution?

Graphs can be constructed where the difference in cut values is arbitrarily large

[56]. This might be expected since the original problem is NP complete, the relaxed

problem is not, and we have placed no restrictions on the type of graphs involved.

• Even if we have a solution that is close to optimal, how balanced is it?

We make the following observation. The balancing term in Ratiocut is

1
|A| + 1

|B| . If we plot this for various values of |A| and n (Figure 1.2) we see a large

penalty near the extremes which is desirable but a very small penalty for values of

|A| between. So if we want a balance closer to |A|
n

= .5 this can be achieved even

when |A| >> |B|. This is particularly true when there are a large number of vertices

which is usually the case for images.

Figure 1.2: Ratiocut Penalty
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• What should we do with vertices where fi = 0? This situation is precluded in

the original combinatorial solution for f .

The choice of putting vertex i where fi = 0 into cluster A along with fi > 0 is

arbitrary. We could just as well have chosen to place it in cluster B.

• Are clusters connected?

We will see in Section 1.6 that one of the clusters will always be connected but

the other may not be. This upsets our intuition about what a cluster should be. We

expect the nodes within a cluster to have some similarity, but if the cluster itself is not

connected how can this be. Also, this is a practical issue if we should do successive

biclusters to break an image into multiple clusters. We want to start our algorithm

with a connected graph and this might no longer be the case. Why this is the case

will be explained in Section 1.6.

In an attempt to overcome these issues and force the spectral clustering results

to give clusters with better Ratiocut values some algorithms resort to adhoc methods

such as looking for a better Ratiocut around zero; for example A = {i|fi ≥ r} and

B = {i|fi < r} where r ≥ 0. The result may still not be optimal and one of the

clusters could still not be connected.

These kind of problems have led us to adopt an alternative justification for spec-

tral clustering and an algorithm which reflects this.

1.4 Overview of Literature

The clustering literature, with connections to spectral clustering, is primarily

concerned with the solution of a combinatorial problem. Since this problem turns

out to be NP hard, its solution is attempted via relaxation to a spectral clustering

problem.

The literature is generally concerned with one or more of the following issues:

• alternatives to spectral clustering,

6



• justification of spectral clustering,

• edge weight selection,

• how to use of eigenvectors to obtain clusters,

• how many clusters to construct, and

• applications.

An excellent starting point for the study of spectral clustering is the tutorial

by Ulrike von Luxburg [56]. After that, possibly the most referenced paper on the

subject is by Shi and Malik [53].

There are alternatives to spectral clustering. An algorithm for finding bipartitions

with minimum cut weight is presented by Stoer and Wagner [55]. However, this

algorithm does not address the problem of finding balanced partitions.

Some authors make use of several eigenvectors, collect these into a matrix, and

partition based on the row vectors.

Alpert and Yao [2] construct a min-cut problem where cluster volumes must fall

within predefined ranges. They then define a max-min k-way vector partitioning

problem based on the eigenvector rows, and show that these problems are equivalent

when all eigenvectors are used. Of course in this case, since min-cut is NP hard,

their vector partitioning must also be NP hard. No justification, except for numerical

experiments, is presented when not using all eigenvectors.

Alpert, Kahng, and Yao [1] define their MELO (multiple eigenvector linear or-

derings) algorithm, which uses multiple eigenvectors to produce a bicluster.

White and Smyth [58] define a new cost function, referred to as the Q function,

which is a measure of the deviation between the probability that both ends of an

edge lie in the same cluster, and the square of the probability that either end of an

edge lies in the cluster. Minimization of the Q function is a problem whose relaxation

7



results in (approximately) Lrw, the random walk Laplacian. K-means clustering is

then applied to the rows of some of the eigenvectors of Lrw. The best clustering is

computed by varying K and computing Q for each partition produced.

Another probabilistic approach is done by Meila and Shi [46] [47]. They define

a cost function via a random walk and connect this to the NCUT balanced cost

function. They then present a machine learning algorithm to determine edge weights,

trained by predefined image clusters.

While Meila and Shi’s random walk development is fairly intuitive, a more obscure

attempt at justifying spectral clustering via the random walk Laplacian, is done by

Nadler, Lafon, Coifman, and Kevrekidis [48]. This is based on an assumption that the

graph vertices are distributed according to the probability distribution, p(x) = e−U(x)

where U(x) is a potential.

Another discrete cost function is presented in the paper by Kanna, Vempala, and

Vetta [40]. They define an (α,ε) bi-criteria, relax the minimization problem, and then

show that spectral clustering has a worst case approximation guarantee with respect

to the (α,ε) measure. While interesting, it does not seem to be that practical.

Other attempts to place bounds on the cluster results with respect to a cost

function date back to Donath and Hoffman [21]. They set a lower bound on the sum

of the edge cuts, where the number of clusters, and the number of vertices in the

clusters was preselected. So, again, not that practical.

Ng, Jordan, and Weiss [49] use a typical approach to spectral clustering; i.e. the

symmetric Laplacian and k-means clustering applied to multiple eigenvectors. They

then use the Cheeger constant [11] of the clusters to construct criteria assumptions. If

these assumptions are met, they show that there exists orthogonal vectors in k space

such that rows of the eigenvectors are ”close” to them.

Sharon, Galun, Sharon, Basri, and Brandt [52] apply spectral clustering to image

segmentation. They present a multigrid approach (see also Bichot [6]) where spectral

8



clustering (Ncut cost function) plays the part of bi-clustering at each coarseness level.

Dhillon, Guan, and Kulis [17] [16] give another multigrid approach using the

weighted Kernal k-means algorithm. This projects the data vectors onto a higher

dimension space where k-means does the clustering for the refinement steps. Spec-

tral clustering is applied at the coarsest level. They apply this technique to image

segmentation and gene networks.

A technique that is not spectral based, is presented by Felzenszwalb and Utten-

locher [24]. This is applied to image segmentation, and while not spectral in nature,

has an interesting approach for coarsening of the image. They define a concept of a

segmentation being too fine or too coarse. A lumping procedure is then applied to

lump vertices into segments that are neither too fine or too coarse.

Orponen and Schaeffer [50], while accepting the spectral clustering method in

principle, seek to avoid the solution of the eigenvalue problem, by construction of an

approximate Fiedler vector. This is done by minimization of the Rayleigh Quotient

of a reduced Dirchlet matrix via gradient descent.

The issue of round off error in computation of the Fiedler vector via Krylov

subspaces is taken up by Matsekh, Skurikhin, and Rosten [45]. They observe that

round off error can make the Fiedler vector unsuitable for image segmentation. We

address this issue later this thesis.

Clustering the Fiedler vector is analyzed by Chan, Ciarlet, and Szeto [7]. Their

issue is, what is the best way to split the Fiedler vector? They show that a median cut

on the second eigenvector is optimal, in the sense that the partition vector induced

by this is the closest partition vector to the second eigenvector. What they actually

prove, is that the median cut on any vector is optimal, to that vector. So, it’s not

really a justification for using the median cut for segmentation.

Ding, He, and Simon [18] show the equivalence of symmetric Nonnegative Matrix

Factorization (NMF) and Kernal k-means, and then the equivalence of Ncut and
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NMF. The definition of Ncut they use is not the same as that defined by Shi and

Malik. The NMF of a p× n matrix X is X ≈ FGT when F is p× k and G is k × n.

Another clustering approach, that is entirely different, is presented by Grady and

Schwartz [32]. They start with the RatioCut problem and convert to an isoperimetric

problem which can be solved as a solution to a linear system.

A very interesting paper comes from Zelnik-Manor and Perona [59]. They use

the inverse Gausian to compute weights, but associate a different scaling factor with

each vertex. The scaling factor reflects the density of vertices at each vertex. This

allows for handling of multi-scale data and background clutter. They also propose a

cost function for automatic determination of the number of clusters.

Similarly, Fischer and Poland [28], also adjust the scaling factor for each ver-

tex. But, their technique for doing so is different. They also propose use of k-lines

clustering of the eigenvector rows instead of k-means.

We deal with image segmentation and micro-array analysis in this paper. Another

application that is only starting to receive some attention is the application of spectral

clustering to Phylogenetics [10] [8] [60]. Here spectral clustering has been proposed

as an alternative to maximum parsimony, maximum likelihood, and neighbor-joining.

The data, so far, has been gene sequences. The techniques are mostly fairly standard:

symmetric laplacian, multiple eigenvectors, and k-means.

Other papers are mentioned elsewhere in the thesis and are not repeated here.

1.5 Vibrational Model

We first consider a problem with an infinite number of points. Suppose we have a

membrane which is continuous. It is stretched over some geometric shape Ω which is

connected but possibly not convex; such as a circle, square, L shape, etc. Vibrations

on the membrane are described by the wave equation −ρü +4u = 0 in Ω [15],[23]

with natural (free) boundary conditions. Here u is the displacement of the membrane,

and ρ = 1
v2

where v is the speed of propagation of the wave.
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Suppose we only have transversal vibration without friction. We assume standing

wave solutions of the form u(x, y, t) = U(x, y)eiωt. The problem then becomes a

generalized eigenvalue problem of the form −4U = ω2ρU .

The smallest vibrational frequency is zero, which corresponds to the first vibration

mode, which is a constant function. The second vibration mode corresponds to the

Fiedler vector. This solution divides the membrane into two parts. Each part is

connected and moves synchronously. One part will have positive displacement while

the other has negative displacement. These are the nodal domains induced by the

eigenfunction (more on this is Section 1.14).

Now, suppose instead of a membrane we have a mass/spring system with a finite

number of points (nodes) in a plane. The masses are free to move perpendicular to

the plane. The equation describing this is Mz̈ +Kz = 0 where M is a mass matrix,

K a stiffness matrix and z a vector whose zi entry describes the displacement of the

ith point mass.

Assuming a standing wave solution z = Zeiωt, the equation becomes the gener-

alized eigenvalue problem −ω2MZ + KZ = 0. Here the values of any eigenvector

Z represent the magnitude and sign of vibration of each node for the corresponding

fundamental frequency ω. Again consider the Fiedler vector which defines the 2nd

vibrational mode. Nodes with the same sign are connected and move synchronously.

This consideration of vibrational nodes imposes a natural bicluster on the mass/spring

system.

Suppose we have masses of all unity so that M = I. Take the point masses to

be vertices in a graph and the spring constants wij to be a weight assigned to the

edge connecting vertices i and j where i 6= j. The stiffness matrix K is now the graph

Laplacian. To see this note that an element of the vector KZ is the net force on node
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i for displacement vector Z or

(KZ)i =
∑
j

wij(zi − zj) = [
∑
j

wij]zi −
∑
j

wijzj

where

Kij =


∑

j wij if i = j

−wij if i 6= j

Thus we arrive at the problem expressed in terms of a graph Laplacian. Spectral

clustering produces a biclustering corresponding to the second mode of vibration.

This clustering satisfies our intuitive notion of a clustering as each cluster is connected,

vibrates in phase (similarity) and vibrates π degrees out of phase with the other cluster

(dissimilarity).

The statement that the clusters are connected is intuitively true for the membrane

with an infinity of points and can be proven (see Section 1.14) but is not as apparent

for the finite mass/spring system. We have also assumed that there are no boundary

(zi = 0) nodes. We will use some theorems by Fiedler to resolve these issues.

1.6 Fiedler Theorems

The 1975 paper by Miroslav Fiedler [26] proved two theorems on the Fiedler

vector which he referred to as the characteristic valuation of a graph.

While the work of Fiedler is mentioned by some papers [53],[57],[36] it is not

central to the combinatorial justification for spectral clustering. We will see however

that it clarifies certain aspects and is important for understanding practical numerical

results of spectral clustering.

We repeat Fiedlers theorems here with some modification of terminology.

Theorem 1.4 (Fiedler [26]) Let G = (V,E) be a finite connected, weighted graph.

Let L be the unnormalized Laplacian of G and u the Fiedler vector of L. Then

∀ r ≥ 0 the subgraphs induced by A = {i ∈ V : ui ≥ −r} and B = {i ∈ V : ui ≤ r}

are connected.
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Figure 1.3: Fiedler Vector for a Tree

Corollary 1.5 (Fiedler [26]) If r = 0 then both A and B are connected.

Theorem 1.6 (Fiedler [26]) Given any edge cut of a finite, connected, weighted graph

G that creates two connected components there exists a weighting (positive valuation)

of the edges of G such that the Fiedler vector defines the same two components. This

partition is derived via positive and negative values of the Fiedler vector and there are

no zero values in the Fiedler vector.

In Figure 1.3 (a tree), Figure 1.4 (a lattice), and Figure 1.5 (a wheel) we display

Fiedler vector values for three graphs with constant edge weights. The values for the

Fiedler vector are listed against the corresponding vertex. These examples demon-

strate how Theorem 1.4 would partition the graph. Lattices will be used for image

biclustering. The wheel in particular shows how using ≥ 0 and < 0 as partitioning

criteria can lead to disconnected clusters.

The first thing to note is that there is no good reason to preferentially place nodes

with ui = 0 in cluster A or B. But there is a very good reason to place these boundary

13



Figure 1.4: Fiedler Vector for a Lattice

Figure 1.5: Fiedler Vector for a Wheel
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nodes in both clusters A and B. We see from Corollary 1.5 that both clusters A and

B will now be connected.

Theorem 1.6 demonstrates the importance of the weights we place on edges.

Choosing any bicluster giving connected clusters there is a weighting of the edges

which will produce it. So we must be very careful to choose weights which impart

some meaning to the similarity of vertices.

We will present a model for edge weights on images in Section 1.10.

1.7 An Extension of Fiedlers Theorem

The theorems of Fiedler as applied to graphs are stated for unnormalized graph

Laplacians. We propose and prove a more general version of them such that they will

apply to the normalized graph Laplacians and the more general eigenvalue problem

Lx = λMx where M is any positive diagonal matrix. This problem corresponds to a

mass/spring system where the mass matrix is not necessarily the identity matrix. In

particular, we want to show that an eigenvector corresponding to the second small-

est eigenvalue of this generalized eigenvalue problem can be used to partition the

associated graph for the problem into connected components.

To this end we state two lemmas and a theorem from Fiedlers 1975 paper [26]

that we will need in our proof. Recall that a matrix is irreducible if it is not reducible

and (see ”Special Matrices and Their Applications in Numerical Mathematics” [27]

page 79) a square matrix is reducible if it is in the form

A =

∣∣∣∣∣∣∣
B C

0 D

∣∣∣∣∣∣∣
or can be placed in this form via permutation P TAP .

Lemma 1.7 (Fiedler [26]) Let C be a diagonal matrix with cii > 0 and K a sym-

metric irreducible matrix, then CKC is symmetric irreducible.
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Lemma 1.8 (Fiedler [26]) Let K be a symmetric irreducible matrix and α > 0 such

that the diagonals of K + αI are not zero, then K + αI is symmetric irreducible.

These Lemmas follow from the observation that under the operations as defined

the positions of non-zero elements in K are unchanged and no new zero elements are

created.

Theorem 1.9 (Fiedler [26]) Let A be an nxn nonnegative irreducible symmetric

matrix with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn. Let u = (ui) > 0 be an eigenvector

corresponding to λ1 and v = (vi) an eigenvector corresponding to λ2. Then for any

α ≥ 0, the submatrix A(Mα) is irreducible where Mα = {i : vi + αui ≥ 0}.

Note: u = (ui) > 0 exists by the Perron-Frobenius Theorem [37] [25]. That is.

since A is nonnegative and irreducible, there exists a positive eigenvector u for λ1.

We now generalize Fiedlers Theorem as follows.

Theorem 1.10 Let G = (V,E) be a finite connected graph with vertices V numbered

1, . . . , n and edges E assigned a positive number kij. Let K ∈ Rnxn be the unnormalized

Laplacian of G. Let M ∈ Rnxn be a diagonal matrix where mii > 0. Let y be the

Fiedler vector of the generalized eigenvalue problem Kx = λMx. For r ≥ 0, let

Mr = {i : yi + r(M
1
2 )iIi ≥ 0} where I = (1, 1, . . . , 1)T . Then Gr the subgraph induced

on G by Mr is connected.

Proof: We note that this proof follows closely that of Fiedler for the unnormal-

ized Laplacian.

Since G is connected K is irreducible. Let B = −M− 1
2KM− 1

2 . B is nonnegative

on the off diagonal elements, since Bij = − 1√
mii
Mij

1√
mjj

and is the product of terms

with sign of −+−+. some α > 0 : B+αI is nonnegative, symmetric, has positive di-

agonals and by Lemmas 1.7 and 1.8 is irreducible. Furthermore, (λ, x) is an eigenpair
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of Kx = λMx⇐⇒ (λ̂ = −λ+ α, y = M
1
2x) is an eigenpair of (B + αI)y = λ̂y.

Now, 0 is an eigenvalue of Kx = λMx with eigenvector I (all ones). Since K is

positive semidefinite 0 is the smallest eigenvalue. Then u = M
1
2 I is the eigenvector

of the largest eigenvalue of B + αI. Let v be the eigenvector of the second largest

eigenvalue of B + αI.

Let r > 0 and Mr = {i : vi + rui ≥ 0}. By Theorem 1.9, the submatrix

(B + αI)(Mr) is irreducible =⇒ K(Mr) is irreducible =⇒ the subgraph induced on

G by Mr is connected.

In particular take r = 0. Then {i : yi ≥ 0} defines a connected subgraph of G

and since −y is also a Fiedler vector for Kx = λMx, we see that {i : yi ≤ 0} also

defines a connected subgraph of G.

The generalized eigenvalue problem Kx = λMx is equivalent to −By = λy where

y = M
1
2x. Note that y preserves the sign of eigenvector x and so x and y produce

the same clustering for r = 0.

The generalized eigenvalue problem is also equivalent to M−1Kx = λx with the

same Fiedler vector as in the original problem.

For the case M = D (the diagonal of K) we get the normalized equivalents of

the graph Laplacian, D−
1
2KD−

1
2 = Lsym and D−1K = Lrw.

So, without recourse to combinatorial models we have shown that the normalized

graph Laplacians and the more general forms of these equations using a mass matrix

produce connected subgraphs via spectral clustering.
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1.8 Effect of mass matrix on segmentation

Having extended one of Fiedlers Theorems (see Section 1.7) with respect to the

mass matrix Laplacian problem Lx = λMx, we wished to examine the effect of the

mass matrix on clustering.

Numerical experiments were performed. We present the following observations

which apply to biclusters produced via the Fiedler vector.

1. Clusters defined by division of the Fiedler vector via ≥ 0 and ≤ 0 will be

connected. This is insured by our extension of Fiedlers Theorem.

2. The two vertices of highest mass tend to be in separate clusters; see Figure 1.6

for two examples of this.

3. For the vertex of highest mass, if the mass is large enough, it will be in a cluster

by itself provided observation 1 is not violated; see Figure 1.7 and Figure 1.8.

4. The vertex of smallest mass is never isolated in a cluster by itself; see Figure 1.9.

Observation 3 can be understood (but not proven) by the following. Reformulate

the problem Lx = λMx as M− 1
2LM− 1

2y = By = λy. Let mi be the mass of vertex

i. The matrix B has elements Bij = 1√
mi
Aij

1√
mj

. If we take B row by row we see

that we are adjusting the weight of the edges of row (vertex) i by 1√
mi
√
mj

. Suppose

mi is the largest weight and mi >> mj for every i 6= j. If the original edge weights

are large relative to 1√
mi

, then we now have the smallest weights around vertex i and

would expect it to be in a cluster by itself.

Observation 4 follows for similar reasons with mk << mi and the largest weights

are around vertex k. So it will be strongly associated with the surrounding vertices.

Numerical experiments for these results are reproduced in the following figures.

At each vertex its mass and Fiedler vector value is listed. The Laplacian was setup
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with constant edge weights and the Matlab eig function was used to solve for the

Fiedler vector.

Figure 1.6: Observation 2: Separation of Two Highest Masses

Figure 1.7: Observation 3: Largest Mass in a Cluster by Itself

Figure 1.8: Observation 3: When Largest Mass can’t be in a Cluster By Itself
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Figure 1.9: Observation 4: Smallest Mass never in a cluster by itself

1.9 Image Segmentation

Our problem is to bipartition an image according to the ideas discussed in Sec-

tion 1.5. A real world object is like the membrane, a continuous, infinite (for all prac-

tical purposes) number of points. When we take a picture we reduce the real world

image to a finite number of pixels. In a simple case, each pixel has red,green,blue

(RGB) values from 0 to 255. We consider the discrete image as a graph with vertices

corresponding to the pixels which are labeled as consecutive positive integers from

the lower left edge of the image to the upper left edge column by column as shown

in Figure 1.10 for an image with m rows and l columns.

Edges are defined based on a 5 point stencil. The result is a m× l lattice. If we

had a 3 dimensional image we would define similarly a pixel numbering with edges

defined on a 7 point stencil.

Note that the graph Laplacian of a lattice has a structure imposed by the 5 point

stencil and the numbering choice for the vertices. The only non zero elements of the

Laplacian lie on the diagonal, adjacent to the diagonal, and ±m columns from the

diagonal.
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m ◦ 2m ◦ . . . ◦ml
...

...
...

2 ◦m+ 2 ◦ . . . ...

1 ◦m+ 1 ◦ . . . ◦ (l − 1)m+ 1

Figure 1.10: Labeling of Pixels in an Image

The final component we need to construct the Laplacian are the edge weights.

1.10 Edge Weights

There are many ways to assign weights. The method we choose is implemented in

Leo Grady’s software [31]. It is based on a combination of RGB values and geometric

distance.

Say pixel 1 and pixel 2 are connected by an edge and they have RGB values

{R1, G1, B1} and {R2, G2, B2}. Let δR = R1 − R2, δG = G1 − G2, and δB =

B1−B2.

Let valDist =
√
δR2 + δG2 + δB2. Then normalize the values with respect to

the range [0, 1]. Set geomDist = 1, which is the same for all edges.

The distances are a measure of dissimilarity between pixels. For the Laplacian we

need measures of similarity. This is achieved by using the function e−dist
k∗a where a

is a constant and k a positive integer. These control the rate that similarity declines

with distance. For our model we choose k = 1.

Definition 1.11 edgeWeight = e−dist+epsilon where dist = geomScale∗geomDist+

valScale ∗ valDist

We have introduced 3 parameters: geomScale and valScale adjust the relative

importance of geometric vs RGB values. Geometric distances are always unity, since

the pixels are nodes of a uniformly spaced lattice, but value distance (valDist) can

vary from 0 to 1 and values are typically less than 0.05. geomScale is typically chosen
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to be 1 and valScale 25 or larger. epsilon is the minimum allowable weight. A

typical value for epsilon is 10−5. We will discuss the impact of these parameters in

Section 1.12.

1.11 Spectral Clustering Algorithm

The remarks of the previous Sections are embodied in the following algorithm.

1. Formulate the problem as a graph G = (V,E) with n vertices.

2. Number the vertices of G from 1 to n.

3. To each edge we assign weights and construct a weighted adjacency matrix A

for G and the associated degree matrix D.

4. Construct Laplacian matrix L = D − A.

5. Compute the Fiedler vector Y = {y1, y2, . . . , yn} of the Laplacian L.

6. BiCluster the graph into subgraphs A and B using Y as follows:

A = {i ∈ V : yi ≥ 0}, B = {i ∈ V : yi ≤ 0}.

Notes:

• The graph G must be connected.

• There are many ways to assign weights. Section 1.10 only describes one method.

• A
⋃
B = V but it’s possible that A

⋂
B 6= ∅ since there may be yi = 0.

• With respect to the Vibrational justification for spectral clustering, A and B

are the optimal solutions. Their RatioCut values are irrelevant.

• Since both A and B are connected, we can use successive applications of the

algorithm to generate smaller clusters.
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1.12 Tuning the Edge Weight Parameters

Some numerical experiments using Matlab with the image in Figure 1.11 were per-

formed to illustrate the effect of the parameters on weight assignment as described in

Section 1.10. The image is of a cats ear with dark fur against a light gray background

with some white whiskers and fur. This has an obvious clustering consisting of the

ear and the background.

The primary image is 200x320 pixels with RGB values from 0-255. A graph

Laplacian is constructed as defined in the previous Sections.

Figure 1.11: Base Image for Analysis

For the initial analysis the image is scaled by sampling of pixels into images with

smaller resolution. Weights are assigned with valScale = 25, geomScale = 1, and

epsilon = 10−5. The Matlab eigs sparse eigensolver was used.

The results are shown in Figure 1.12, where a light line has been added to the

image to show the boundary separating the clusters generated. The graph in the
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lower right hand corner shows solution time in seconds (y-axis) versus image size in

pixels (x-axis).

Figure 1.12: Initial Analysis

The results are good with the exception of the 200x320 image where the boundary

deviates upwards to the top edge of the image. This can happen when the valDist

is too small with respect to the geomDist.

Consider the lattice in Figure 1.4. In this graph the edge weights are all one and

the lattice could be considered as an image where RGB values for all pixels are the

same. Note how the boundary {i : yi = 0} bisects the image from top to bottom (the

smaller dimension) at the midpoint of the larger dimension. This illustrates how the

geometry of the image can affect the Fiedler vector, and we might suspect that the

distance term is overpowering the value term.

Adjusting the valScale to 50 and repeating the experiment solves the problem,

see Figure 1.13.

Why don’t we see this problem at the reduced image scales? As the scale is re-

duced by sampling the computed mean valDist is increased from .018 for the 200x320
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Figure 1.13: Effect of increasing ValScale

image to .05 for the 25x40 image. As a result the valScale ∗ valDist term increases

with respect to the geomScale ∗ geomDist term which is unchanged. This has the

same effect as adjusting valScale.

Similarly varying geomScale with respect to valScale can cause degradation of

the bicluster as shown in Figure 1.14 for the 40x64 image.

So what does epsilon,in edgeWeight = e−dist + epsilon, do? Very small edge

weights can occur when we have a small number of connected pixels with RGB values

very different from those surrounding them. These “islands” or “specks” within the

image can dramatically affect the clustering. To see this consider the lattice in figure

1.4 but with the edges of a single vertex made smaller than one (vertex number 6

using the numbering previously defined). The result is shown in Figure 1.15. Vertex

6 is now in a cluster by itself.

We can see this in our ear image if we set epsilon = 10−8. The result shown in

Figure 1.16 shows the effect of one such “speck” in the 100x160, 50x80, and 40x64

scaled images. In the 40x64 image we have magnified the image to show more clearly
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Figure 1.14: Effect of geomScale

Figure 1.15: Effect of Islands

how a single pixel has been isolated. Epsilon smooths out large dissimilarities in RGB

values.
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Figure 1.16: Effect of Epsilon

1.13 Eigenvalue Solvers

When using the Matlab eigs function we add a shift to the Laplacian, so that it

is now positive definite. If the shift is too large, there is not good relative separation

with respect to the smaller eigenvalues and eigs may not return a good Fiedler vector.

Also, if we are solving to a tolerance that is too large the Fiedler vector may be of

low quality.

In these cases disconnected clusters can be produced, see Figure 1.17 where a

shift of 10−5 was used. Note that for the 50x80, 40x64, and 29x46 scaled images the

cluster boundary gives disconnected clusters. We know from Corollary 1.5 that this

is not possible, so something must be wrong with the solution for the Fiedler vector.

The eigs function was usable in our experiments since the size of the image

was small. Larger images will produce Laplacians with dimensions in excess of 107.

This size problem requires the use of large sparse eigensolvers such as BLOPEX
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Figure 1.17: Poor Quality Fiedler Vector produced by too small a shift

[44],[41]. These implement iterative solvers such as LOBPCG [43] and make use of

preconditioners [42]. But, whatever method is used, if either {i ∈ V : fi ≥ 0} or

{i ∈ V : fi ≤ 0} is not connected then the Fiedler vector produced is suspect.

Image segmentation can practically exploit these eigensolvers. The Laplacian is

symmetric positive semi-definite with smallest eigenvalue of zero. It can be shifted

to produce a positive definite matrix without changing the eigenvectors. We know

what the eigenvector is for eigenvalue zero, and this can be used as an orthogonal

constraint for solution of the next eigenpair. These eigensolvers are designed to solve

for only a few of the smallest eigenvalues, and we only need the second eigenvalue

and associated eigenvector, so spectral clustering can be done efficiently.

1.14 Nodal Domain Theorems

Fiedlers theorem deals with the bi-clustering of a graph based on the 2nd eigen-

vector of a graph Laplacian (Fiedler Vector). We have provided an extension of

this to a generalized eigenvalue problem. A Theorem similar to Fiedlers exists for

higher eigenvectors. We summarize the following work done on nodal domains and
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it’s discrete counterparts.

In Courant and Hilberts book ”Methods of Mathematical Physics, Volume 1”,Ch.

6, Sec. 6 [13] they present the following theorem. This dates from 1924, and is

frequently referred to in papers on nodal domains. It is often referred to as CNLT

(Courants Nodal Line theorem).

Theorem 1.12 (CNLT [13] pg 452) Given the self-adjoint second order differential

equation

L[u] + λρu = 0 (ρ > 0)

for a domain G with arbitrary homogeneous boundary conditions; if its eigenfunctions

are ordered according to increasing eigenvalues, then the nodes of the n-th eigenfunc-

tion un divide the domain into no more than n subdomains.

By nodes is meant the set {x ∈ G : un(x) = 0}. Depending on the dimension of

G this might be a nodal point, curve, surface, etc.

These nodes (also referred to as nodal lines) divide the domain G into connected

sub-domains called nodal domains.

If G has dimension m then the nodes will be hyper surfaces of dimension m− 1.

It can be shown that the nodes are either closed or begin and end on the boundary

[30], and are of Lebesque measure zero [9].

The proof of CNLT provided by Courant and Hilbert is rather cryptic; being more

of a discussion than a formal proof and is for the case of G ⊂ R2. A more accessible

proof for the more general case of G ⊂ Rm is provided in a paper by Gladwell and

Zhu [30].

While not giving the details of the proof we will examine it’s basic features and see

how it acts as a template for a discrete CNLT. Ultimately, we will derive a new version

of the discrete CNLT, that includes Fiedlers theorem as a special case. Fiedlers proof

depends on theorems of of positive, irreducible matrices. It is instructive to see how

an entirely different approach than that used by Fiedler yields the same result.
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The CNLT proof depends on:

1. the nature of the eigenfunctions and eigenvalues of the problem, i.e. the eigen-

values can be ordered and the eigenfunctions form a complete orthonormal set,

2. the variational form of the problem,

3. the application of the min-max characterization of eigenvalues (Courant-Fischer

Theorem), and

4. the unique continuation theorem.

Gladwell and Zhu prove the problem for the Helmholtz equation 4u + λρu = 0

on a domain D.

This has infinitely many positive eigenvalues 0 ≤ λ1 ≤ λ2 ≤ ... whose correspond-

ing eigenfunctions form a complete orthonormal set, see Griffel [33] Thm 9.16. λ1 = 0

for the free membrane problem and λ1 > 0 for the fixed membrane problem.

Those of us primarily versed in matrix analysis are familiar with the Courant-

Fischer theorem from Horn and Johnson [37] Thm 4.2.11. The equivalent on a domain

D that is a subset of a Hilbert space is given in Griffel [33] Thm 10.18.(b) and is

repeated here.

Theorem 1.13 (Griffel [33] Maximum Principle pg 287) If A is a positive symmetric

differential operator, on a Hilbert space H, with domain D, a compact inverse, and

with eigenvalues λ1, λ2, ..., then

λn+1 = max
k1,...,kn∈D

{min{R(u) : u⊥span{k1, ..., kn}}}

where R(u) = <u,Au>
<u,u>

is the Rayleigh Quotient.

Gladwell’s proof will examine solutions of the variational form of the problem on

the space H1
0 (D). H1

0 (D) is the space of L2(D) functions, whose derivatives are in
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L2(D) and vanish on the boundary of D [39] [33]. The domain D is assumed to be

bounded and connected. In this case, we have, A = − 1
ρ(x)
4 and R(u) =

∫
D4u·4u∫

D ρuu
.

The unique continuation theorem [38] states that if any solution u ∈ H1
0 (D) of

the Helmholtz equation vanishes on a non-empty open subset of D then u ≡ 0 in D.

The complete proof of the CNLT is in three parts. First a theorem by Courant

and Hilbert that there are at most n+ r− 1 sign domains for the eigenfunction un of

λn. Then a theorem by Hermann and Pleijel that shows for a connected domain this

number (n + r − 1) can be improved to n, and finally the extension of this limit to

unconnnected domains.

The continuous CNLT serves as motivation for a discrete version. The proof for

this discrete version was not completed until 2001 in a paper by Davies, Gladwell,

Leydold, and Stadler [14]. The discrete CNLT deals with solutions of Aun = λnun

and requires the following terminology and definitions.

Let A ∈Mn be a real symmetric matrix with non-positive off diagonal elements.

A graph Laplacian L would be an example. Other examples would be problems of the

form L + αD where D is a diagonal matrix and L = −1 times the adjacency matrix

of a graph.

Solutions of Aun = λnun are of the form λ1 ≤ λ2 ≤ ... ≤ λn. Whatever the exact

form of A we can associate it with the off diagonal elements of a graphG = (V,N) with

vertices V corresponding to the columns and edges E (possibly weighted) associated

with the non-zero elements aij.

The nodal set of an eigenvector un does not lend itself to an exact correspondence

with the nodal set and nodal domains in the continuous case. Instead, strong and

weak sign graphs are defined as follows.

Definition 1.14 (Davies [14]) A strong positive (negative) sign graph is a maximal,

connected subgraph of G, with vertices i ∈ V and u(i) > 0 (u(i) < 0).
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Definition 1.15 (Davies [14]) A weak positive(negative) sign graph is a maximal,

connected subgraph of G, with vertices i ∈ V and u(i) ≥ 0 (u(i) ≤ 0).

We speak of a vertex as having a sign of positive, negative, or zero. We note

two key components of these definitions. The subgraphs are connected and they are

maximal in the sense that no vertices of the same sign as the subgraph can be added

to the subgraph and have it still be connected.

A few examples in Figure 1.18, that we derived, will illustrate these concepts.

The eigenvectors of the graphs were computed using the unnormalized Laplacian

with constant edge weights. Only the signs of vertices are shown.

Figure 1.18: Examples of Strong and Weak Sign Graphs

Given these definitions and terminology the discrete CNLT is formulated as fol-

lows.

Theorem 1.16 If G = (V,E) is a connected graph and A a symmetric matrix with

non-positive off diagonal elements, the n-th eigenfunction un of A divides the graph

into no more than n weak sign graphs.
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The proof of the discrete CNLT proceeds as for the continuous CNLT and depends

on the ordering of the eigenvalues, the orthonormality of the eigenfunctions, and the

min-max characterization of the eigenvalues. Instead of using the variational form

used in the continuous CNLT an identity from Duval and Reiner [22] is used. Also,

we do not have the unique continuation theorem in the discrete case but there is an

analog (see Davies et al. Lemma 3 [14]).

It should be noted that much of this proof was done in the previous paper by

Duval and Reiner. However, they made the claim that the CNLT was valid for strong

sign graphs. Friedman [29] had previously given examples showing this is not true.

Figure 1.19 shows two examples of this. The more complicated one on the left being

one we derived.

Figure 1.19: Strong Sign Graphs exceeding eigenvector number

Also, note that the graph G must be connected and the theorem applies to weak

rather than strong sign graphs.
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A few conclusions can be draw from the definitions and an examination

of examples.

• The number of weak sign graphs is always ≤ the number of strong sign graphs.

• The number of both weak and strong sign graphs can be < n.

• If there are no zero vertices the number of strong and weak sign graphs are the

same.

• If there are zero vertices the number of strong and weak sign graphs can still

be the same, see Figure 1.20.

• The number of weak or strong sign graph can decrease with increasing n.

The last item seems a bit counter intuitive, but is demonstrated by an example

we derived in Figure 1.20.

Figure 1.20: Sign Graphs decreasing in number

Finally, in the concluding remarks of Davies paper he states that the theorem

can be extended to the generalized eigenvalue problem (K − λM)u = 0 where K is

positive semi-definite and M is positive definite.
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Fiedlers theorem is in part a special case of the discrete CNLT for n = 2 where the

cut is with respect to r = 0. However, note that Fiedlers theorem covers subgraphs

induced by {i ∈ V : u(i) ≥ −r} and {i ∈ V : u(i) ≤ r} where r > 0, which the CNLT

does not address.

We will modify the definition of weak sign graphs and produce a new

version of CNLT that completely covers Fiedlers theorem as a special case.

Definition 1.17 An r-weak positive (negative) sign graph is a maximal, connected

subgraph of G, with r > 0 and vertices i ∈ V and ui ≥ −r (ui ≤ r). (For an example

see Figure 1.21.)

Figure 1.21: An example of R-weak Sign Graphs

Theorem 1.18 (Modified Discrete CNLT) If G is a connected graph, A a symmetric

matrix with non-positive off diagonal elements, and r > 0 the n-th eigenfunction un

of A divides the graph into no more than n r-weak sign graphs.

Proof: Let r ≥ 0 and R be an r-weak sign graph (rwsg). Then either there

exists a weak sign graph (wsg) W such that W ⊂ R (we will call this type 1) or if

no such wsg exists then there exists a wsg U such that R ⊂ U (we will call this type

2). To see this, suppose R is a maximal set generated from fi ≤ r. Then if R has
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entries ≤ 0 it is type 1. If it doesn’t then it has entries ≥ 0 and ≤ r in which case R

is a wsg U with R ⊂ U and it is type 2. We can make similar arguments when R is

generated from fi ≥ −r.

Let |wsg| be the number of wsg and |rwsg| be the number of rwsg. Suppose R1

and R2 are type 1 rwsg and W is a wsg such that W ⊂ R1 and W ⊂ R2. Since R1

and R2 are maximal we must have R1 = R2. So |wsg| ≥ |type 1 rwsg|.

Let R1 and R2 be rwsg of type 2 with R1 ⊂ W1 and R2 ⊂ W2 where W1 and W2

are wsg. By maximality if R1 6= R2 then W1 6= W2. So |wsg| ≥ |type 2 rwsg|.

Suppose there is also a rwsg R3 of type 1 such that R1 ⊂ W1 ⊂ R3 then by

maximality R1 = R3 a contradiction. So the set of wsg associated with type 2 is

disjoint from the wsg associated with type 1. From this we conclude that |wsg| ≥

|rwsg| and by the discrete CNLT the n-th eigenfunction divides the graph into no

more than n r-weak sign graphs.

We make an observation that the definition of strong sign graph excludes zero

vertices from the partition of the graph and they are mutually exclusive. Weak

sign graphs include the zero vertices, if any, and if they do they will not be mutually

exclusive. This means that the set of all strong or weak sign graphs may not constitute

a partition of V in the sense as usually stated in the combinatorial graph partitioning

problem [6]. This being the case, partitioning objective functions (ratio cut, Ncut)

lose their meaning without some redefinition.

From a spectral clustering perspective this is not a restriction and we can ask the

question, ”Should we be partitioning based on strong or weak sign graphs?”. Both

have an association with modes of vibration. And if we use strong sign graphs we

may be excluding vertices, which does not seem desirable. But, in either case our

clusters will be connected which we intuitively think of as desirable.

The use of r-weak sign graphs has a further advantage. We have said previously

there is no good reason to include/exclude zeros from multiple clusters. But when
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dealing with a numerical solution to our eigenvalue problem we will in general not

know any vertex eigenvector value to exact precision. If the error is ≤ r where r is

small we would more properly define clusters based on r-weak sign graphs. In this case

the overlap between clusters may be enlarged but our clusters will still be connected.

1.15 Summary

We have reviewed the concept of spectral clustering and proposed an alternative

explanation (the Vibrational model) of why it is an effective technique for clustering.

We have provided an extension to one of Fiedlers theorems using similar techniques as

those used by Fiedler which complements the Vibrational model. We have examined

discrete nodal domain theory and by expanding the definition of weak sign graphs

produced a modified CNLT that includes as a special case the CNLT and Fiedler

theorem. It’s use for image segmentation was explained. The importance of edge

weights and a particular method for their determination was examined. Finally,

some numerical results were given.
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2. MicroArrays

2.1 Introduction

In the previous chapter we introduced the ideas involved in spectral segmentation

and applied these to image segmentation. In this chapter we will extend these to the

problem of microarray analysis. We will advocate a normalization rule for the analysis

of microarray data where the objective is recognition of genes with similar expression

levels in time dependent experiments.

Microarray analysis involves some practical problems that were not relevant in

image segmentation. The primary one being that if we are going to have sparse

Laplacians then we will almost certainly end up with disconnected graphs. We will

propose a new technique for dealing with this.

We also alluded to using successive bisection in the previous chapter. We will

develop and implement a technique for doing this and as a part of this propose a rule

for partition selection.

2.2 What is a Microarray?

A microarray is a chip containing oligonucleotide sequences used to detect the

expression level of genes. We will give a brief review of the biology inherent in this

statement.

Genes are DNA sequences of nucleotides A,C,T, and G which code for proteins.

The process of protein formation in a cell involves: transcription of DNA to mRNA

(messenger RNA) in the cell nucleus and then translation of mRNA to a protein via

a ribosome, see Figure 2.1. When proteins are being formed for a gene this is called

gene expression.

Gene expression is not a constant process. It can depend on the various states

a cell is in, such as metabolic cycles, disease response, and stages of embryonic de-

velopment. The level of gene expression will vary. This can either be an increase

or decrease from ”normal” levels, referred to as up regulation and down regulation.
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Figure 2.1: Gene Expression

Knowing which genes are expressed and by how much can aid in the understanding

of cellular processes and in diagnosis of disease.

However, measurement of the concentration of proteins in a cell is difficult. One

solution is to measure mRNA as a proxy. This depends on the assumption that most

mRNA created is actually translated to a protein.

Various DNA microchip technologies have been designed to perform this function.

They have the advantage of being able to measure the expression levels of thousands

of genes at the same time. For purposes of discussion we will use the Affymetrix

GeneChips.

A GeneChip microarray is a quartz wafer less than 1/2 inch square, on which

millions of oligonucleotide sequences have been assembled using a photolithographic

process.

GeneChips are specific to the genome of a particular organism (Ecoli, Aribidopsis,

Homo Sapiens, etc. The oligonucleotide sequences consist of nucleotide chains of

length 25 (25-mers). These chains are chosen to correspond to selected parts of genes,

and these genes (ideally) cover the entire genome of the organism. These 25-mers are

complementary to the sense strand of DNA and correspond to mRNA sequences.

Some 11-20 of these 25-mers target a specific gene and are referred to as perfect

matches (PM). In addition, a 25-mer corresponding to each of the PMs is constructed
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with a mismatch (MM) in the 13th base pair.

The 25-mers are built on the GeneChip in a pattern of dots as small as 11 microns

in size. Each dot is referred to as a probe and the set of probes for a single gene are

called probe sets. Also, each chip contains calibration probes. Each probe contains

hundreds of the 25-mers with the same nucleotide sequence. The information about

where these probes are on the chip is contained in an Affymetrix file with an extension

of .chp. Meta information about the probe set such as gene name is contained in a

(.gin) file.

Now, omitting most of the biochemical details (just know it’s not as simple as

it sounds), a sample of mRNA is extracted from the cells of an organism and is

converted to a biotin labeled strand of complementary RNA (cRNA). The cRNA is

complementary to the 25-mers on the GeneChip. When the GeneChip is exposed to

this sample a process called hybridization occurs. During hybridization, complemen-

tary nucleotides line up and bond together via weak hydrogen bonds. The greater the

concentration of a particular mRNA strand, the greater the number of bonds formed

within one or more of the probes in the corresponding probe set, see Figure 2.2 for a

depiction of a GeneChip.

Now, the number of those hybridized probes have to be counted. A fluorescent

stain is applied to the GeneChip that bonds to the biotin and the GeneChip is pro-

cessed through a machine that paints each pixel of the chip with a laser (a pixel is

the minimum resolution of the laser and is a small part of a probe) causing that pixel

to fluoress, the magnitude of which is measured. The results are stored in a (.dat)

file containing the raw information about the GeneChip experiment.

The pixel locations and intensities are mapped and normalized into probe loca-

tions and these results are stored in a (.cel) file.
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Figure 2.2: An Affymetrix GeneChip

All of this can be referred to as pre-analysis. We will pick up the discussion of

analysis in the next section. For now, lets discuss microarray experiments in more

detail.

A measurement by a single microarray is just a sample size of one. It’s multiple

sample sizes that are going to tell us biologically meaningful information. In general

microarray experiments are of two kinds. (1) Studying a process over time. For

example: We want to measure the gene response to a drug or a metabolic process.

(2) Looking for differences between states. For example: Normal cells versus Cancer

cells, which would have utility in disease identification.
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In this paper our analysis will be concerned with an experiment of the first type.

This involves multiple chips measuring responses in one or more organisms. Taken

over time or during identifiable metabolic stages.

2.3 How is Microarray data analyzed?

After the pre-analysis is done we have a lot of raw data and still a long way to

go. The first part is referred to as low level analysis and involves a three step process,

see Bolstad [5] for a more detailed discussion.

1. The adjustment of probe level information in each array for background noise.

This is due to variations in the cRNA preparation process.

2. The normalization of data across multiple arrays. Arrays cannot be created

perfectly identical. Data distributions and calibration probes are involved in

this.

3. Summarization of probe information into an intensity (expression level) for each

probeset.

This gives an expression level for each gene in each array. The results of this

analysis are stored in a (.chp) file.

At this point we have the following files.

• .cdf probe to probe set (gene) mapping

• .gin information about the probe set

• .dat pixel level data

• .cel probe level data

• .chp gene level data
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The next level of analysis (referred to as High level) involves looking for rela-

tionships between genes via various forms of cluster analysis (hierarchical, K-means,

principle component, spectral, etc.).

2.4 Normalization of data

Various statistical normalizations have been applied to the raw data to produce

gene expression levels. Before performing spectral clustering we propose normal-

izing the expression vectors to one. Here’s why.

Suppose, our microarray experiment examines a metabolic process at 5 distinct

points. The processing of the raw data has produced an array of data where the

rows are the genes and the columns (5 in number) are the expression levels. We

are interested in clustering genes according to how similarly they are upgraded or

downgraded. Now suppose we have two genes with expression levels (vectors) of

(1, 3, 4, 2, 1) and (2, 6, 8, 4, 2), see Figure 2.3. The expression levels of these two genes

show a strong correlation with respect to how they change through the metabolic

process; the second just has a magnitue twice the first. We would like to see these

genes clustered together.

But, looking at these within our 5D expression space, they may be far enough

apart that when we generate edge weights they are not connected. Geometrically, we

are saying that vectors close to the same straight line segment starting at the origin

are correlated and should be clustered together. To accomplish this we normalize

the data to vectors of length 1. This is equivalent to projecting the vectors onto a

unit sphere around the origin. An example of this in the 2D case is illustrated in

Figure 2.4. Without normalization (circles in green) there are three obvious groups.

With this normalization (circles in red) there are two.

2.5 Disconnected Graphs

When defining edges between graph nodes (i.e. expression level vectors) we are

typically dealing with thousands of nodes. To control the sparcity of the resulting
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Figure 2.3: Genes with correlated expression levels

Figure 2.4: Effect of normalization on clusters

Laplacian we usually have to limit the number of edges in some way. For images we

controlled the number of edges by defining our graph as a lattice with edges defined
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by a 5 point stencil.

The data for microarrays does not fit into any preconceived graph architecture.

The edge weight between two nodes is computed via a function such as an inverse

gaussian distance which we will describe in more detail later. Then we apply a cutoff

weight value. If the computed edge weight is less than this value the edge weight is

set at zero. This effectively says there is no edge between those two nodes.

Selection of the limiting value can produce a graph that is almost complete or

one that is so sparse few of the nodes are connected. Ideally we want a graph whose

Laplacian is sparse (so it’s easier to solve), has enough edges to retain the inherent

structure of the data, and is connected (so we can apply the nodal theory previously

developed). The first two conditions can be met by examination of the sparsity of the

resulting adjacency matrix and adjustment of the cutoff weight. The last condition

(connectivity) is not as easy.

As the edges are reduced we inevitably create multiple components in the resulting

graph. The discrete nodal domain theorem required our graph to be connected.

These disconnected components need to be identified. For components of size one

(no edges connect to it) this is simple and efficiently accomplished by examination of

the adjacency matrix; i.e. all values in a row are zero. For components of a larger

size this is not as easy.

Graph algorithms such as a Breath First Search can be utilized to do this (see [12]

page 534) but have the disadvantage of having run time of Θ(V +E). Generally there

are a lot more edges than vectors and this can be quite large (potentially Θ(V 2) ).

An alternate method to find components using spectral methods was proposed by

Ding, He, and Zha [19]. Their method is based on examination of the eigenvectors of

the Laplacian with eigenvalue zero. We know the multiplicity of eigenvalue zero will

be the number of components of the graph. Careful examination these eigenvectors

can identify the individual components.
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We propose an alternate method which is also spectral in nature and will

easily integrate into the successive biclustering algorithm we will introduce later. This

method starts with the addition of a connecting node to the graph and the definition

of an edge of a small weight between the connecting node and every other node. Our

graph is now connected, and this small perturbation to an unnormalized Laplacian

is subject to an exact solution in terms of the original Laplacian for the problem

of Lv = λv. We next give the solution to this problem in the following

theorem, and then apply it to an algorithm for extraction of components.

Theorem 2.1 Let L be the unnormalized Laplacian of a graph G with n vertices, not

necessarily connected. Let Ĝ be a graph formed by the addition of a vertex to G and

an edge between this vertex and every other vertex. Let all of these edges have weight

b > 0. Let L̂ be the Laplacian of Ĝ and let In be the vector of all ones of size n. Then

the eigenpairs of L̂w = λw can be characterized as follows:

1. (0, In+1),

2. (b,
[
v
0

]
) where Lv = 0v and v 6= 0 and

∑
vi = 0,

3. ((n+ 1)b,
[ In
−n
]
),

4. (λ+ b,
[
v
0

]
) where Lv = λv and λ > 0.

Proof:

By construction of Ĝ it is connected and so (1) follows.

We have L̂ =
[
L+Db B

BT nb

]
where B = −bIn and Db is the diagonal matrix with b on

all diagonals. Let v be a solution of Lv = 0v where v 6= 0 and the sum of the entries

of v is zero. Then L̂
[
v
0

]
=
[
Lv+Dbv

BT v

]
=
[
bv
0

]
= b
[
v
0

]
which proves (2). Note that this

case can only occur when G is connected.

We also have L̂
[ In
−n
]

=
[ LIn+DbIn+B(−n)

BT In+nb(−n)

]
=
[

bIn+nbIn
−nb+nb(−n)

]
= (n + 1)b

[ In
−n
]

which

proves (3).
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Suppose Lv = λv and λ > 0, then by the orthogonality of v to In we have

L̂
[
v
0

]
=
[
Lv+Dbv

BT v

]
=
[
λv+bv

0

]
= (λ+ b)

[
v
0

]
which proves (4).

Now, we have only to show that all possible eigenvalues have been accounted for

and their eigenvectors are linearly independent.

If G is connected then by (1),(3) and (4) we have defined n + 1 eigenpairs. The

eigenvectors v in (4) are independent and orthogonal to In. So, (1) and (4) define n

linearly independent eigenvectors. For the same reason,
[ In
−n
]T [ v

0

]
= 0 and we have

n+ 1 independent eigenvectors. Since, G is connected (2) does not apply.

If G is not connected then the multiplicity of the eigenvalue zero is the number of

components of G. Let m be the number of components of G. For any two components,

say Gj and Gk of G, we can define a vector v such that Lv = 0 and
∑
vi = 0. Just

take vi = 1 if i ∈ Gj and vi = α if i ∈ Gk where α = |Gj|/|Gk|. We can construct

exactly m− 1 such vectors which are linearly independent. So, by (1),(2), and (4) we

have 1, m− 1, and n−m independent vectors for a total of n and then (3) adds the

last.

Corollary 2.2 If L̂v = bv then
∑
vi = 0 and all values in v for any component of

G will be the same.

Proof: We note that our choice of eigenvectors for (2) in the proof of 2.1 span

the eigenspace of eigenvalue b. Let us denote these as wi. Any other eigenvector in

the eigenspace will be of the form v =
∑

i βiw
i. We have

∑
j vj =

∑
i βi
∑

j w
i
j = 0.

Finally, since the values of components in any wi are the same by construction, this

must also be true in v.

The importance of this corollary is that an eigenvector of eigenvalue b must be

a Fiedler vector of L̂ since 0 < b < λ + b. Choosing any one of these vectors to

use with bisection we see that all values in v for any component of G must be the
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same and this implies a component cannot be split into separate clusters by finding

an r-weak sign graph. As such, a Fiedler vector of L will provide a way to separate

components of the graph G. Successive, biclustering will naturally separate out all of

the components.

The examples in Figure 2.5 illustrate these theorems.

Figure 2.5: A connected and unconnected graph and the effect of a connecting node
(dum) on their eigenpairs

For purposes of clustering we want the option of using the normalized Laplacians:

Lsym = D−
1
2LD−

1
2 and Lrw = D−1L. Theorem 2.1 does not apply to them and

deriving exact solutions to the perturbation of L by a connecting node has proven to

be elusive. Perturbation of the algebraic connectivity (2nd eigenvalue) is addressed

in [34], but the issue of perturbation of the Fiedler vector is more difficult. But, from

numerical experiments we can make the following observations.

Assume b (the perturbation weight) is small relative to the minimum of the

weights in L. For the case of a connected graph, let v be the Fiedler vector of

the unperturbed problem Lrwv = λv. The Fiedler vector of the perturbed problem,

L̂rww = λpw or equivalently L̂v = λpDv, is of the form w =
[
v+δ
α

]
where vector δ is
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small relative to the values of v and λp ≈ λ. The perturbed Fiedler vector of G with

the connecting node removed should then give us the same partition as the original

vector.

For the problem of the symmetric Laplacian, Lsym = D−
1
2LD−

1
2 , we have similar

results since eigenvalues of Lrw and of Lsym are the same, and if v is an eigenvector

of Lrw then w = D
1
2v is an eigenvector of Lsym. Note that one implication of this is

that the eigenvector of eigenvalue zero is no longer a constant vector.

For the case of a graph with multiple components, the Fiedler vector of the

perturbed matrix will have values distributed according to the components of the

graph. For the Lrw Laplacian the values of any component will be nearly a constant.

Each component may or may not have the same constant, but the eigenvector will

include both positive and negative values and so a partition of the vector will yield

non-empty partitions where a component cannot be split into separate partitions (but

could be in both).

We can now define the following algorithm for identification of components and

successive biclustering. This will be valid for the unnormalized Laplacian and we

have some intuition based on numerical experiments that it is valid for the normalized

Laplacians.

Step 1 Reduce the adjacency matrix of G by all singleton components.

Step 2 Select a value for b.

Step 3 Add a connecting node to G as described above to create Ĝ.

Step 4 Construct the Laplacian and solve for the first few eigenpairs.

Step 5 Excluding the zero eigenvalue identify the next smallest eigenvalue.

Step 6 Use the eigenvector of this eigenvalue to partition the graph.
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Step 7 If the partition results in an empty partition then exclude that eigenvalue

and using the next smallest eigenvalue goto Step 6.

Step 8 Using these components, repeat the process starting with step 3 until a suf-

ficient number of clusters has been identified.

Comments:

If we only want to identify all components then we can use the unnormalized

Laplacian and stop in step 5 when the eigenvalue is not b.

In Step 1, we choose to eliminate all singletons. This is not necessary, but is

done because it is easy and cheap (the diagonal value of a singleton is zero) and the

singletons don’t carry much information about their relation to other vectors (genes).

In the program to follow we just put them all in a partition by themselves. This can

significantly reduce the size of the Laplacian and speed up the analysis.

We choose b to be .001 times the weight limit. Since, all edge weights must be

greater than this limit, this makes b << all other edge weights.

One can ask, ”Why bother with the connecting node?”. Just examine the zero

eigenvectors of L. There are some practical reasons

If the graph G is connected we don’t know this and we still have to examine the

zero eigenvector. Ideally this would have an eigenvector with identical values or for

the symmetric Laplacian one which has all positive values. Then we know the graph

is connected. Numerical solutions will give eigenvectors that are not exact. When

the solutions are normalized and the dimensionality of L is very large this can result

in values close to zero including both positive and negative values. This will result

in a bad partition of the graph. Adding a connecting node allows us to identify and

ignore the zero eigenvector.

In step 6 we partition according to the r-weak sign graphs. If r is too large this can

result in two identical partitions. This is a major type of error and should terminate
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processing less successive iterations endlessly replicate the same cluster. Since we will

partition by r-weak sign graphs the resulting partitions may intersect. As discussed

earlier, we consider this an advantage of the technique.

2.6 Successive BiClustering

In the previous section we developed an algorithm for dealing with graphs with

multiple components. This algorithm not only deals with multiple components but

also handles partitioning of a connected graph. We want to incorporate this algorithm

into another for successive biclustering applied to our original graph. We have two

problems to solve. (1) Which partition do we apply the algorithm to next?, and (2)

When do we stop?

To answer the first question we need a measure of the internal connectivity of

a graph. We would say a graph is fully connected if the graph were complete and

have the same weight on all of the edges. In this case partitioning of it would not be

meaningful. All nonzero eigenvalues are the same and every partition creates another

set of complete graphs. On the other hand a graph with no edges has no internal

connectivity.

We developed the following measure which reflects these two extremes.

Definition 2.3 The internal connectivity of a graph is |G|
n(n−1) , where |G| = sum of

weights of all edges of G.

This is based on the observation that the number of edges in a complete graph

with n vertices is n(n − 1)/2. For convenience we have dropped the constant factor

2 in the definition of connectivity.

We will select the next cluster to partition by choosing the one with the lowest in-

ternal connectivity. Note that while this is motivated by mathematical considerations

it is in essence an adhoc procedure.

Figure 2.6 illustrates this process. The example is of a graph formed from 4 normal

distributions of data. These are centered at positions (2,3), (8,9), (2,9), and (5,6).
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Weights are generated via a gaussian weight function with a minimum weight. This

results in some isolated vertices (singleton clusters, in dark blue) and one cluster of 2

vertices (in red). Successive biclustering roughly identifies the original distributions.

Note that there may be vertices in more than one cluster but these are not identified

in the plots generated here.

Figure 2.6: An example of successive bicluster
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The solution to the second question (about stoping criteria), is also adhoc in

nature. We could choose to proceed until all partitions achieved some minimum con-

nectivity. We could also choose to proceed till a fixed number of clusters is produced,

or until we achieve a full hierarchical breakdown to one or two vertices per cluster.

In either case we have to make an a-priori judgement about these values.

Some authors have suggested using eigenvalue jumps to determine the number

of clusters to find [49]. This works well if we are looking for disconnected or nearly

disconnected clusters. For microarrays, however, we do not expect the resulting graph

to be that simple. We choose here to explore the data by looking for 16 clusters. This

choice is arbitrary, and would only be a starting point for analysis. After examination

of the results, this choice would be modified for succeeding runs.

2.7 Weight construction

In the software, several techniques are implemented to compute edge weights.

Inverse Gausian distance is computed via the function e−sc∗d
2

where sc is a scaling

factor which defaults to 1 and d is the Euclidian distance between two gene expression

vectors; i.e. the norm of the difference between the two vectors. This is then limited

to zero by a radius value; i.e. if the weight is less than the radius then the edge weight

is zero. This is done to introduce sparsity to the Laplacian.

A fully connected (complete) graph can be produced. Here all of the edge weights

are one. Edges can be predefined and in this case the edge weights are one. These

techniques are implemented to analyze certain test graphs.

The technique we will use for microarray data is a Euclidean distance limited by

a radius value. When the distance is greater than the radius value the weight will

be zero, otherwise it is one. This was chosen because we will be projecting the gene

expression vectors onto the unit sphere and we do not have to handle large variation

in distances. We note that angles could be used here as a measure of distance.
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2.8 ”Toy” experiments

In this thesis and in many of the papers referenced, so called ”Toy” data is used to

analyze the algorithms presented there. The use of this data is done for two reasons.

1. validation of techniques

2. validation of software

Toy data provides test examples where the clustering results are well defined, or

at least roughly defined intuitively. For ”Real world” data the clustering may not

be easily recognized. If it could be there would be no need to do the analysis. We

can also construct Toy data which should represent specific situations the software is

supposed to handle.

The Toy data gives us an objective way to test our techniques and their imple-

mentation in software. This is not always as simple as it sounds. Debugging of the

software for successive bicluster revealed several problems that required adjustments

to the algorithm and enhancements to the theory supporting them. Software testing

was thus an integral part of the overall process of doing the mathematical research.

Once the Toy data has served it’s purpose, we can now use the software to examine

”real world” data. Some of the mathematics reviewed and developed here is fairly

advanced and some rather simple. The ultimate purpose of what we have developed

is not just an exercise in pure mathematics, but hopefully has applicability to real

world data and problems. In the next section we will apply these techniques to real

microarray data.

2.9 Analysis of real microarray experiments

We will analyze yeastvalues taken in a time sequence over a metabolic shift from

fermentation to respiration. The source of this data is the Matlab demo ”Gene
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Expression Profile Analysis” from the Bioinformatics Toolbox. The data represents

a set of 7 microarrays where all of the low level analysis has occurred prior to ours

to produce a set of gene expression levels. Further, genes with very low expression

levels have been filtered out. This leaves 822 genes represented in an 822x7 matrix.

One of the problems we have to face for multi dimensional data is how to represent

the results. Toy experiments were all 2D so these had a natural way to graph clusters.

We could do something similar for 3D but with difficulty. Microarray data will usually

have dimensions larger than this.

Listing the genes in groups is necessary because this is what a biological scientist

is going to need to evaluate the cluster. This is always possible by cross referencing a

genes matrix row number to a meta data list of gene descriptions. The listing of the

clusters for this experiment is given in Appendix D.

We also desire a graphical way to represent the results. We want to visually

confirm how ”good” the cluster is and identify interesting characteristics of the data.

The technique we choose is to graph a genes expression level (unnormalized) against

its microarray number(1 to 7 for our test data). All genes within the same cluster

are placed in the same graph. Multiple graphs are produced; one for each cluster,

see Figure 2.7. The set of genes with no edge connection to any other gene are not

represented. The number of entries in the cluster and the clusters connectivity (see

Definition 2.3) is printed above each graph.

This analysis was performed using the Matlab eigs function solving the Lv = λv

problem, vectors normalized, Euclidian distance function with a radius cut off of .2,

and a value of r = .0000001 used to compute r-weak sign graphs.

2.10 The Software

The software is implemented in Matlab. The program to perform the analysis is

coded as a function and listed in Appendix A. A program to invoke the function for

the examples in this paper is listed in Appendix 2.
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Figure 2.7: Microarray data clustering result

The function arguments consist of 4 fixed parameters and a variable argument list.

These are an array of the vertices to cluster, the number of clusters to produce, a string

defining the computational options, and a string defining the graphs to produce. The

variable arguments define Radius, Sigma, Scale, Mass, Edges, and Rweak the value

to use for determination of sign graphs. The first 2 arguments are required. The

remainder have defaults if not entered.

The function returns a cell array where the clusters are defined and a vector which

records a connectivity value for each cluster. The first cluster in the cell array is all

of the isolated vertices. A vertex can appear in more than one cluster.

Two Methods for determining clusters are provided in the MATLAB program;

successive bicluster and kmeans. Kmeans clustering is described in Luxburg [56] and
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involves applying the kmeans algorithm to the row vectors of a matrix of the first k

eigenvectors of the graph Laplacian. It works well provided clusters are nearly dis-

connected and there are not lots of isolated vertices. It produces a classic partitioning

where a vertex can only be in a single cluster.

Parameters and their options are detailed in the program comments in Ap-

pendix A.

The computation of eigenvalues is based on the Matlab eigs or eig function. The

eigs function should be used for large sparse matrices. The eigenvalue problem can

be rcut Lv = λv, mass Lv = λMv, or ncut Lv = λDv.

The organization of the program is as follows:

• Analyze parameters, set defaults,

• Define weight matrix

• Define connecting node edge weight

• Do kmeans clustering if requested

– let k be the number of clusters to solve for

– solve the eigenvalue problem

– identify the eigenvectors of the k lowest eigenvalues (not including zero)

– perform k-means on the row vectors of these eigenvectors

– define these clusters in the cell array partition

• Do successive biclustering if requested

– initialize the cell array partition with one entry containing all vertices

– split out the unconnnected vertices into their own partition entry and

define its connnectivity as 999

– select the other partition entry for processing
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– WHILE the number of partition entries is less than the number requested

do

– bicluster the selected partition entry based on fiedler vector

∗ solve the eigenvalue problem

∗ identify lowest nonzero eigenvalue and it’s associated eigenvector

∗ B: split the partition into two clusters based on the r-weak value and

the eigenvector

∗ if both partition are identical to the original then error the program

∗ if either partition has zero entries then skip to next eigenpair and goto

B:

– split the selected partition into two entries based on bicluster results

– compute the connectivity of all partition entries

– select the partition entry with smallest connectivity

– end WHILE

Various plots are produced throughout the program as requested in the Plot

parameter.
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3. Blopex

3.1 Introduction

The software package Block Locally Optimal Preconditioned Eigenvalue Xolver

(BLOPEX) was introduced in 2005. It has recently been upgraded to Version 1.1.

BLOPEX implements the Locally Optimal BLock Preconditioned Conjugate Gradi-

ent (LOBPCG) method for solution of very large, sparse, symmetric (or Hermitian)

generalized eigenvalue problems. Version 1.1 adds support for complex matrices and

64bit integers.

The generalized eigenvalue problem for large, sparse symmetric and Hermitian

matrices occurs in a variety of traditional problems in science and engineering; as

well as more recent applications such as image segmentation and DNA microarray

analysis via spectral clustering. These problems involve matrices that can be very

large (dimension > 105) but fortunately are sparse and frequently we only need to

solve for a few smallest or largest eigenpairs. This is the function of the BLOPEX

software.

BLOPEX has been previously described in [44] and [41] . This paper seeks to

give a more detailed description of the software than has previously been supplied.

This software includes not just the implementation of the LOBPCG method but

interfaces to independently developed software packages such as PETSc 1, Hypre 2,

and MATLAB 3.

The remainder of this chapter organized as follows. We will start in section 3.2 by

a general discussion of the problem. Review some of the other software available for

the problem in section 3.3. Present the LOBPCG method in section 3.4. Section 3.5

then covers the BLOPEX software. BLOPEX is available via a new Google Source

1PETSc (Portable Extensible Toolkit for Scientific Computation) is developed by Argonne Na-
tional Laboratory

2Hypre (High Performance Preconditioners) is developed at the Center for Applied Scientific
Computing (CASC) at Lawrence Livermore National Laboratory

3MATLAB is a product of The MathWorksTM
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site and this is covered in section 3.6. We discuss the environments BLOPEX has

been tested on in section 3.7. Give some numerical results in section 3.8, and wrap

up in section 3.9.

3.2 The Problem

We seek solutions to the generalized eigenvalue problem Ax = λBx where A and

B are real symmetric or complex Hermitian. B must be positive definite. A and/or

B may be defined as a matrix or be supplied in functional form.

Note that the requirement that B be positive definite implies all eigenvalues are

finite and the symmetry of A and B imply all eigenvalues are real.

We emphasize that A and B need not be supplied in matrix form, but can be

defined as functions.

Problems of this type arise from discretizations of continuous boundary value

problems with self-adjoint differential operators [43]. We often only need the m

smallest eigenvalues or eigenpairs; where m is much less then the dimension of the

operator A. We don’t usually need solutions to high accuracy, since the discretization

of the problem is itself an approximation to the continuous problem.

The large dimensionality of the problem precludes solution by direct (factoriza-

tion) methods. Thus the need for iterative methods. But iterative methods can have

slow convergence and so we require a preconditioner [42]. The choice of precondi-

tioner is separate from the choice of iterative method.

We will be using the LOBPCG iterative method (see section 3.4). Preconditioners

are supplied to BLOPEX by the calling programs. This and the interfaces to PETSc

and Hypre make possible the use of high quality preconditioners.

3.3 Current Software

There are a number of existing software packages for solutions of large, sparse

eigenvalue problems. We discuss two of these that have been previously described in

ACM transactions.
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Anasazi [3] is a package within the Trilinos framework, written in C++ which

uses object oriented concepts. It implements 3 block variants of iterative methods:

LOBPCG, Davidson, and Krylov-Schur.

Anasazi solves for a partial set of eigenpairs of the generalized eigenvalue problem.

It uses a preconditioner which must be supplied by the user. Starting with Trilinos

9.0 there is interoperability with PETSc.

Preconditioned Iterative Multi Method Eigenvalue (PRIMME) [54] was released

Oct 2006. It implements the JDQMR and JD+k methods to solve for a partial set

of eigenvalues of the problem Ax = λx. It does not currently handle the Generalized

Eigenvalue problem. Written in C it has an emphasis on being ”user friendly”, by

which is meant a minimal parameter set can be used to obtain solutions without

extensive tuning or knowledge on the part of the user. More sophisticated users can

utilize an extended set of parameters to tune the performance.

PRIMME can handle real and complex numbers and orthogonality constraints.

The preconditioner is supplied by the user. Interfaces to PETSc and Hypre are not

mentioned and presumably not available.

Neither PRIMME or Anasazi mention interfaces to Matlab.

By contrast BLOPEX:

• handles both real and complex numbers

• is written in C

• has similar parameters as PRIMME

• has interfaces to PETSc, Hypre, Matlab, and stand alone serial interfaces

• PETSc and Hypre allow for use of high quality preconditioners
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3.4 LOBPCG

To solve for a single eigenpair of the problem Ax = λBx the LOBPCG iterative

method can be described as a 3 term recurrence formula as follows:

x(i+1) = w(i) + τ (i)x(i) + γ(i)x(i−1), (3.1)

where

w(i) = Tr(i), r(i) = Ax(i) − λ(i)Bx(i),

λ(i) = (x(i), Ax(i))/(Bx(i), x(i)) the Rayleigh quotient, and,

T is a preconditioner for the matrix A.

The values τ (i) and γ(i) in (3.1) are chosen to minimize λ(i+1) within the subspace

span{w(i), x(i), x(i−1)}. This minimization is done via the Rayleigh–Ritz method as

described in [51]. The preconditioner T should be linear, symmetric, and positive

definite.

Use of x(i) and x(i−1) as basis vectors for span{w(i), x(i), x(i−1)} can lead to ill-

conditioned Gram matrices in the Rayleigh-Ritz method, because x(i) can be very

close to x(i−1).

The effect of basis vectors is a non-trivial problem discussed in [35]. An improve-

ment on the basis used in (3.1) was proposed by [43]. This replaces x(i−1) with p(i)

as follows:

x(i+1) = w(i) + τ (i)x(i) + γ(i)p(i), (3.2)

and for the next iteration

p(i+1) = w(i) + γ(i)p(i) and the other terms are as in (3.1).
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In this case, it can be shown that span{w(i), x(i), p(i)} = span{w(i), x(i), x(i−1)}.

So, the two iterative problems (3.1) and (3.2) are mathematically equivalent but (3.2)

is more numerically stable.

When more than one eigenpair is to be computed a block version of LOBPCG

is used. To compute the m smallest eigenpairs we want to apply the Rayleigh-Ritz

method to the subspace spanned by {x(i)1 , w
(i)
1 , p

(i)
1 , · · · , x

(i)
m , w

(i)
m , p

(i)
m }. This gives m

Ritz vectors x
(i+1)
j as estimates for the m smallest eigenvectors with estimates for

eigenvalues given by their Rayleigh quotients.

We note that the choice of block size m is in part problem dependent and in part

a tuning consideration. This is discussed in some detail in [41].

3.5 BLOPEX Software

The BLOPEX software provides functions to the user for solution of eigenvalue

problems as described in section 3.2. The software external to BLOPEX which the

user writes must do the following:

• setup matrices or functions for A and B

• setup the preconditioner T

• provide functions for matrix-vector operations

• call LOBPCG solver in BLOPEX

BLOPEX software is in written in C. C was chosen since it provides for ease and

versatility of interfacing with a wide variety of languages including C, C++, Fortran,

and Matlab. This makes BLOPEX highly portable.

BLOPEX can be logically separated into two parts. The first part implements

the LOBPCG algorithm. We refer to this as the ”abstract” code. It contains the

functions called by the user as well as a number of utility functions needed internally.

We will discuss this in detail in section 3.5.2.
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The second part is code which provides functions for interfacing with software

packages such as PETSc, Hypre, and Matlab. One challenge for all eigensolver soft-

ware is the necessity of supporting multiple diverse formats for sparse matrices and

vectors. Functions for accessing matrix (vector) elements and doing matrix vector

operations are inherent in the calling software and BLOPEX will have need to ac-

cess these routines. This access occurs via the specific interface functions. We will

describe the interfaces in section 3.5.3.

3.5.1 Structure

Figure 3.1 shows a high level overview of BLOPEX and how it fits with the calling

software. The Driver is software written by the user which calls the LOBPCG solver

in BLOPEX abstract. The driver can be written in numerous external environments

such as PETSc, Hypre, Matlab, etc. BLOPEX provides a number of sample Drivers

which are described in section 3.5.3.

The Driver will use macros, commands, or functions from it’s environment to

define matrices, vectors, and matrix/vector operations. These are communicated to

the LOBPCG solver via parameters, (see section 3.5.2.3). To access these external

environment matrix/vector routines BLOPEX supplies interfaces.

These interfaces package data as multivectors (see section 3.5.2.2) to pass to

the LOBPCG solver and provide functions to convert parameters in formats defined

within BLOPEX to parameters specific to the external environment functions.

BLOPEX requires LAPACK functions or equivalents to perform orthonormal-

ization and solve the generalized eigenvalue problem for the Gram matrices in the

Rayleigh-Ritz method. These can be the standard LAPACK functions dsygv and

dpotrf for real, or zhegv and zpotrf for complex numbers. Equivalents from the

ACML, MKL, or ESSL libraries can be used. The addresses of the routines to use are

passed by the Driver to BLOPEX. If the parameters are not the same as the standard
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Driver Matrix/Vector Routines
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BLOPEX Interface

LAPACK or equivalent

?

Z
Z
Z
Z
Z
Z
Z~

�
�
�
�
��7

-

6

-

Figure 3.1: Structure of BLOPEX Functions

LAPACK funtions then a function must be coded to do parameter conversions.

3.5.2 Abstract Code

This is the solver. It consists of three modules lobpcg.c, multivector.c, and

fortran_matrix.c. Small matrices and vectors that arise as result of Rayleigh-Ritz

Method are kept internal to the abstract code in Fortran column major order and

processed via routines in fortran_matrix.c.

Two routines in lobpcg.c are callable by Drivers. lobpcg_solve_double and

lobpcg_solve_complex. These routines setup a function interpreter which is a list

of function addresses. The functions in multivector.c and fortran_matrix.c

are specific to double (real) or complex numbers. These two functions then call

lobpcg_solve where the LOBPCG algorithm is implemented. As a result BLOPEX

does not have to be compiled specifically for complex or real numbers.

The functions in multivector.c provide for conversions and operations between

matrices in Fortran format and multivectors with pointers to matrices and vectors in

the external environment format. These functions in turn call interface functions to

access these matrix/vector operations.
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3.5.2.1 Algorithms

The steps of the Block LOBPCG algorithm as implemented in BLOPEX follow

with detailed comments on various steps appearing afterwards. We list only the ma-

jor parameters here but we give a complete list and more explanation in section 3.5.2.3.

Input:

• X m starting vectors (in block form)

• A matrix or address of function to compute A ∗X

• B matrix or address of function to compute B ∗X

• T preconditioner (operator, and data)

• Y constraint vectors (in block form)

Output:

• X m computed eigenvectors

• Λ m computed eigenvectors

Algorithm:

1. Apply constraints Y to X

2. B-orthonormalize X

3. [C,Λ] = RR(A,B,X) Apply Raleigh-Ritz Method

4. X = X ∗ C Compute Ritz vectors

5. J = [1, · · · ,m] Initialize the index set of active residuals

66



6. for k = 1, · · · ,MaxIterations

7. RJ = B ∗XJ ∗ Λ− A ∗XJ Compute Residual vectors

8. Compute norms of residual vectors

9. Check residual norms for convergence

10. Exclude converged vectors from index J (soft locking)

11. if all vectors have converged then stop

12. WJ = operatorT (RJ , dataT ) Apply preconditioner to residuals

13. Apply constraints Y to WJ

14. B-orthonormalize WJ

15. if k > 1

16. B-orthonormalize PJ

17. basis for RR is S = [X WJ PJ ]

18. else

19. basis for RR is S = [X WJ ]

20. end

21. [G,Θ] = RR(A,B, S) Apply Raleigh-Ritz Method

22. C = G(1 : m, :) Get columns of G corresponding to X

23. Λ = Θ(1 : m) Get eigenvalues corresponding to X

24. if k > 1
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25. Partition C =


CX

CW

CP

 according to columns of X, WJ , and PJ

26. P = WJ ∗ CW + PJ ∗ CP

27. else

28. Partition C =

CX
CW

 according to columns of X and WJ

29. P = WJ ∗ CW

30. end

31. X = X ∗ CX + P

32. end

Comments:

(1) Constraints Y are previously computed or known eigenvectors. For example,

the vectors of all ones is an eigenvector of the smallest eigenvalue of a graph Laplacian.

So we can choose this as a constraint and then force all vectors of X to be B-orthogonal

to Y. In this case LOBPCG solves for the next m smallest eigenvalues. We apply

constraint Y to X via replacing X with the difference of X and the B-orthogonal

projection of X onto the subspace generated by Y; that is X = X − Y ∗ (Y T ∗ B ∗

Y )−1 ∗ ((B ∗ Y )T ∗X).

(2) B-orthonormalize X using Cholesky factorization; that is R = chol(X ′ ∗ B ∗

X);X = X ∗R−1. Block vector X must be composed of linearly independent vectors

to being with else orthonormalization will fail.

(3) We adopt the following notation: [G,Λ] = RR(A,B, S) to specify the

Rayleigh-Ritz method which finds eigenvectors G and eigenvalues Λ of the generalized
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eigenvalue problem (STAS)G = Λ(STBS)X. STAS is referred to as the gramA ma-

trix and STBS as the gramB matrix. S is given in block form such as [X W P ] where

X, W , and P are block vectors. S forms a basis for the subspace to find estimated

eigenvectors in. Note that the eigenvectors G are chosen to be B-orthogonal.

(4) Note that the B-orthonormality of the Ritz vectors X is preserved.

(5),(9),(10) Initially all residuals of X are active. As we iterate this will change

as their norms converge towards zero. When one of the vectors in X converges to

within a prescribed tolerance it is removed from the index. This we call soft locking.

All of X will remain as part of the basis for the next iteration. However, only the

residuals (denoted by RJ and CG step vectors (denoted by PJ) will be used to create

the new subspace. All of X is retained on the expectation that converged vectors in

X will continue to improve.

(12) To apply the preconditioner to RJ , a call to a routine T provided by the

Driver is done. This function is usually coded in the Driver and must have parameters

of the form void operatorT(void * dataT, void * R, void * W) and must be

able to handle W and R as block vectors. The code for operatorT is highly dependent

on the Drivers environment.

(13),(14) We transform the preconditioned residual block vector WJ to be B-

orthonormal to the constraint Y and the vectors of WJ to be B-orthonormal to each

other.

(15) For k = 1 we do not have the first PJ yet. It is first computed in (29) and

in (26) there after.

(17),(19) For the 1st iteration the basis for Rayleigh-Ritz is S = [X WJ ]. Note

that X and WJ are B-orthonormal with respect to their own vectors, but X is not

necessarily B-orthonormal to WJ . Consequently, the symmetric Gram matrices take
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the form

gramA = STAS =

Λ XTAWJ

. W T
J AWJ


and

gramB = STBS =

I XTBWJ

. I


where the dot notation indicates the symmetry of the matrix. Note that XTAX = Λ

since X is B-orthonormal.

For subsequent iterations the X, WJ , and PJ blocks are B-orthonormal within

their blocks but not between them. So the Gram matrices are

gramA = STAS =


Λ XTAWJ X

TAPJ

. W T
J AWJ W

T
J APJ

. . P T
J APJ


and

gramB = STBS =


I XTBWJ XTBPJ

. I W T
J BPJ

. . I


Finally, we note that computations for the components of the Gram matrices are

optimized in the code, so they are not computed directly from the basis vectors. For

clarity these details have been omitted.

(26), (29) Computation of the block vector P corresponds to p(i+1) in equation

3.2. Note that P has the same number of rows as X.

(31) Finally, we compute a new X which is just the Ritz vectors X = S ∗ C.

3.5.2.2 Data Types

BLOPEX defines several data types which are described here.

To deal with block vectors in various diverse formats BLOPEX defines the struc-

ture mv_MultiVector. This contains the following fields.
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• A pointer to another structure that defines the vectors. How these vectors

are formatted depends on the interface. For example in the PETSc interface

it points to another structure mv_TempMultivector which contains fields that

define the number of vectors, active mask and a pointer to an array of point-

ers, each of which point to a Vec PETSc variable. Interfaces for Hypre, Se-

rial, and Matlab have different but similar structures. Creation of variables of

mv_MultiVector type is done by routines in multivector.c.

• An integer variable that is set to 1 when data for the pointer defined above is

allocated. This is to aid in deletion of the multivector when we are finished

with it.

• A pointer to a structure mv_InterfaceInterpreter which is a list of function

addresses. These pointers are set to the appropriate interface functions.

An mv_Multivector variable such as parameter X then encapsulates the data

and interface functions to manipulate the data.

The second data type is to deal with matrices. This also depends on the interface.

Matrices do not have to be manipulated like block vectors. Typically they are in-

volved in some matrix vector operation and just need to be passed to the appropriate

interface routine which is specified via the interpreter in the associated block vector.

So it is possible we only need to pass a pointer to the matrix as a parameter in

the form it appears in the external environment. This is what is done for the Matlab

interface. Other interfaces take a different approach. The PETSc interface includes in

a multivector like structure, variables for A, B, and KSP solver and then passes this

as the parameter for both A, B, and preconditioner data. The operatorA, operatorB,

and operatorT functions then use the appropriate variable.

Internally the BLOPEX abstract code uses data type utilities_FortranMatrix

to define Fortran style matrices. This includes variables for global column height,
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column height, row width, pointer to position (1, 1) of the matrix, and an ownsData

variable. The global height can be different from the current height because we overlay

in memory blocks of the Gram matrices to optimize their computation.

For BLOPEX version 1.1 we added a type for complex numbers which we call

komplex. Since there is no standard between C compilers for complex numbers we

chose to implement our own type along with routines for the basic math functions

of addition, subtraction, multiplication, and division. This maintains portability of

BLOPEX.

3.5.2.3 Parameters

A description of the parameters for the LOBPCG solver follows. The functional

definition can be found in include lobpcg.h available in the online site.

Some parameters are operators. For these a pointer to the operator is passed.

The operator must be defined as

void (*operatorA)(void*,void*,void*).

If a parameter is not needed then a NULL is passed.

Parameter Description

X Required. A block vector. This is the initial guess of eigenvectors. This can be

based on prior knowledge or just random guesses. The number of vectors defines

the number of eigenvalues to solve for. On output it will contain the computed

eigenvectors.

A Optional. Use this if A is a matrix.

operatorA Required. This implements a matrix vector multiplication. If A is NULL

then it must define A as an operator and do a matrix vector multiplication.
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B Optional. Use if B is a matrix.

operatorB Optional. Only needed if solving a generalized eigenvalue problem. This

implements a matrix vector multiplication. If B is NULL then it must define B

as an operator and do a matrix vector multiplication.

T Optional. Use this if a preconditioner is supplied. This is data in matrix form

to be passed to the preconditioner operatorT. The data is dependent on the

preconditioner that operatorT implements. It could be NULL, a preconditioned

matrix based on A, or A.

operatorT Optional. But must be supplied if a preconditioner is used. This pre-

forms the actual preconditioning on the residuals block vector.

Y Optional. This is block vector of constraints. Orthogonality of X to Y will be

enforced in the LOBPCG solver.

blapfn Required. A structure which contains the addresses to lapack functions (or

equivalents) dsygv, dpotrf, zhegv, and zpotrf.

tolerance Required. A structure containing absolute and relative tolerances to apply

to the residual norms to test for convergence.

maxIterations Required. The maximum number of iterations to perform.

verbosityLevel Required. The LOBPCG algorithm can print error messages and

messages to track progress of the solver. verbosityLevel values control this.

Value of 0 means print no messages. Value of 1 means print error messages,

max residual norm after each iteration, and eigenvalues after last iteration.

Value of 3 means print error messages and eigenvalues after every iteration.

iterations Required. Output. The number of iterations actually performed.
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eigs Required. Output. An array containing the eigenvalues computed.

eigsHistory Optional. Output. An array containing eigenvalues produced after

each iteration.

eigsHistNum Optional. Input. Max number of eigenvalues. This should be ≥ the

number of eigenvalues to compute. It is used to reformat the eigsHistory array

into a matrix format. Required if eigsHistory is not NULL.

residNorms Optional. Output. An array containing residual norms of eigenvalues

computed.

residHistory Optional. Output. An array containing residual norms of eigenvalues

produced after each iteration.

residHistNum Optional. Input. Max number of eigenvalues. This should be ≥

the number of eigenvalues to compute. It is used to reformat the residHistory

array into a matrix format. Required if residHistory is not NULL.

3.5.3 Drivers and Interfaces

Drivers are the programs that setup the eigenvalue problem and BLOPEX ab-

stract is where they are solved. These encompass two separate environments. That

of the Driver (PETSc, Hypre, etc.) handle matrix and vector sparse formats and the

matrix vector operations on them including application of preconditioners. BLOPEX

abstract has all of the logic for the LOBPCG algorithm. The interface is where the

functionality of the two environments overlaps.

The interfaces and various multivector structures reviewed in section 3.5.2.2 can

be intimidating to a user. To overcome this we supply various Drivers which serve

both as examples and in some cases generic problem solvers.

The next sections describe the Drivers and interfaces that are available. For

details of execution of tests with these drivers and configuration for PETSc and
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Hypre, review the Wiki’s available on the Google source html site. See section 3.6 for

more information. For execution of BLOPEX under PETSc and Hypre also see the

appendices of [41].

3.5.3.1 PETSc

BLOPEX is included as part of the PETSc distribution which must be con-

figured with the option --download-blopex=1. Scalar values in PETSc are ei-

ther real or complex and this must be specified during configuration via the option

--with-scalar-type=complex. PETSC provides parallel processing support on ma-

trix vector operations.

There are 4 Drivers distributed with PETSc located in the PETSc subdirectory

../src/contrib/blopex.

• driver.c builds and solves a 7pt Laplacian.

• driver_fiedler.c accepts as input the matrix A in Petsc format. These can

be setup via some Matlab programs in the PETSc socket interface to Matlab;

PetscBinaryRead.m and PetscBinaryWrite.m. These programs read and write

Matlab matrices and vectors to files formatted for Petsc. The version from Petsc

only supports double. We have modified these programs to also support complex

and 64bit integers. Our versions are included in the Google source directory

../blopex_petsc along with PetscWriteReadExample.m to illustrate how to

use them.

• driver_diag.c solves an eigenvalue problem for a diagonal matrix. This serves

as a test program for very large sparse matrices. It has been executed success-

fully with over 8 million rows.

• ex2f_blopex.F is an example of using BLOPEX with PETSc from Fortran.
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3.5.3.2 HYPRE

Hypre does not support complex number or 64bit scalars, but like PETSc pro-

vides parallel support via matrix vector multiplication and high quality precondition-

ers. The BLOPEX LOBPCG solver is incorporated into Hypre programs struct.c

and ij.c located in the Hypre directory ../src/test. These programs have broad

functionality and can setup and solve 3D-7pt Laplacians. They can also input ma-

trix files in Hypre formats to construct a generalized eigenvalue problem. These

files can be created in Matlab using the Matlab matlab2hype package available on

http://www.mathworks.cn/matlabcentral/.

There is also a somewhat less intimidating example in ../src/examples/ex11.c

which solves a 2-D Laplacian eigenvalue problem with zero boundary conditions on

an nxn grid.

3.5.3.3 Matlab

The Matlab interface consists of m files and c files available on the Google source

site under directory ../blopex_matlab. The BLOPEX abstract files must also be

acquired from the Google source site. All c files are compiled under the Matlab Mex

compiler. Complex numbers are supported along with 64-bit integers in the newer

version of Matlab. Preconditioners are implemented in this interface as m files.

3.5.3.4 Serial

These are stand alone drivers and interfaces written in C. There are complex

and real versions. Matrices created by the drivers are in standard Fortran format.

They do not have any parallel support. They have been used primarily for BLOPEX

development testing.
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3.6 The Google Source Site

BLOPEX source code as of Version 1.1 is maintained on the Google source code

site http://code.google.com/p/blopex/ under the SVN version manager. All source

is downloadable.

This site also provides some Wiki documents that describe tests we have executed

for all interfaces and various systems. Between the source code for the Drivers and

the Wiki’s we hope users will find BLOPEX accessable and usable.

3.7 Environments BLOPEX Tested On

BLOPEX has been tested in a wide variety of environments. The following is a

partial list covered by one or more of the Wiki’s described in section 3.6

Machines: UCD XVIB, UCAR Frost, NCAR Bluefire, Lawrence Livermore

National Laboratory, IBM PC

Operating Systems: Linux, Fedora, IBM AIX, Cygwin under Windows 7

Compilers: gcc, IBM blrts_xlc, g++, pgcc, SUN mpcc, AMD OPEN64

Lapack Libraries: Lapack, AMD ACML, Intel MKL, IBM ESSL

MPI: openmpi, mpich2

3.8 Numerical Results

Some numerical tests for 3D 7-Point Laplacians of the BLOPEX implementation

of LOBPCG in Hypre have previously been reported in [44] and in PETSc and Hypre

in [41].

We report here on some results using Hypre and a few of the matrices that were

analyzed by PRIMME as reported in [54]. These matrices are available from the

University of Florida Sparse Matrix Collection at

http://www.cise.ufl.edu/research/sparse/matrices/. A direct comparison to

PRIMME’s results is not possible since they are produced on a very different machine.
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Matrix Rows nnz nnz(L+U) AMD

Andrews 60,000 760,154 234,019,880

finan512 74,752 596,992 5,600,676

cdf1 70,656 1,825,580 71,684,224

cdf2 123,440 3,085,406 147,417,232

Table 3.1: Matrices Analyzed

All of the matrices used are symmetric positive definite. We use matrix An-

drews, which has a ”seemingly random” sparsity pattern and not much ”structure”,

finan512, which is a stochastic matrix used for financial portfolio optimization and

cfd1 and cfd2, which are pressure matrices from structural engineering. Their char-

acteristics are described in table 3.1. Note nnz(L+U) AMD is the number of nonzeros

in L+U of the LU factorization using AMD.

Analysis was performed on a Fedora 10 OS, 4 Quad Core Opteron 2.0 Ghz

CPUs, and 64 GB RAM. Hypre was configured using openmpi with gcc compiler

and BLAS/LAPACK libraries.

To setup the matrices for processing by Hypre we downloaded the matlab versions

and converted them using our matlab2hypreIJ.m program to Hypre formats. This

file was then processed using the Hypre ij program. For example to find 5 eigenvalues

of finan512 to a tolerance of 1e− 6 using the BoomerAMG preconditioner we would

execute:

./ij -lobpcg -vrand 5 -tol 1e-6 -pcgitr 0 -itr 200 -seed 1 -solver 0 -fromfile finan512

For the first experiment (Table 3.2), we process all of the files in single processor

mode. Both the times to setup the preconditioner and to execute the LOBPCG

solver are reported. The matrix Andrews has an eigenvalue very close to zero, which

causes problems orthonormalizing the residual. To overcome this a shift of 1e−7 was
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Eigenvalues to solve for

Matrix Setup 1 2 3 4 5 7 10 15

Andrews 29 4 18 34 62 @ * * *

finan512 1 5 10 22 37 43 66 90 203

cdf1 25 152 297 405 599 737 * * *

cdf2 36 335 644 1342 * * * * *

All times rounded to nearest second.

* Analysis not performed.

@ Failure of dsygv routine.

Table 3.2: Single Processor Setup and Solution Time

applied to the matrix. This was successful up to solution for 5 eigenvalues where

dsygv routine failed. Also, note the relatively large preconditioner setup times for

all matrices except finan512. This seems to reflected in the nnz(L+U) AMD values

shown in Table 3.1. The setup times are independent of the number of eigenvalues to

solve for.

The second experiment (Table 3.3) studies the effect of parallel processing on

solution time for matrix finan512. It solves for 5 eigenvalues using openmpi varying

the number of processors. For example to run with 2 processors, we would split

finan512 into 2 Hypre files using matlab2hypreIJ.m and process as follows:

mpirun -np 2 ./ij -lobpcg -vrand 5 -tol 1e-6 -pcgitr 0 -itr 200 -seed 2 -solver 0

-fromfile finan5122

3.9 Summary

Version 1.1 of BLOPEX has been implemented in PETSC version 3.1-p3 and sub-

mitted to Hypre for inclusion. Version 1.1 incorporates the new features of complex
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Processors Setup Time Solution Time

1 .42 42.86

2 .96 25.17

3 .63 15.00

4 .40 10.82

5 .31 8.35

6 .24 6.44

7 .20 5.20

Table 3.3: Multiple Processor Setup and Solution Time for finan512

numbers and 64 bit integers. The new Google code site for BLOPEX makes testing

documentation available to the user. BLOPEX has interfaces to popular software

packages PETSc, Hypre, and Matlab.
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APPENDIX A. SpectralCluster Function

This is the primary function used for microarray analysis.

function [partition, con] = spectralcluster(X,numclusters,options,plot,varargin)

% Spectral clustering

% Input: Fixed arguments

% X points (vertices) to cluster

% numclusters number of clusters to find

% options options for computation (as a string)

% ----- options for computing weights

% gauss - use gaussian to compute weights

% euclidian - use euclidian distance (default)

% full - make fully connected graph

% edges - edges predefined, weights=1

% norm - normalize point vectors

% ----- what solver to use

% eigs - use eigs to compute e-val

% eig - use eig (default)

% ----- which problem to solve

% ncut - solve L*x=lambda*D*x

% mass - solve Lx=lambda*M*x

% rcut - solve L*x=lambda*x - Rcut (default)

% ----- how to compute multiple clusters

% kmeans - cluster via kmeans

% bicluster - cluster via bicluster (default)

% plot plots to produce (as a string)

% -------------------------------

% nodes - nodes in colors specified by cdx

% edges - edges in colors specified by cdx

% eigval - eigenvalues

% eigvec - fiedler vector

% clusters - graph with clusters in different colors

% info - list misc info

% Input: Variable arguments
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% Radius value to use to limit weights

% Sigma local density or p-value to use in weights

% Scale multiplier for weight computation

% Mass vector of node masses

% Edges predefined edges

% Rweak Rvalue for weak sign graph clustering

%

% Oputput: partition cell array of indexes to nodes showing partitioning

% con vector of connectivity values for clusters

% -------------------------------------

% setup defaults

% -------------------------------------

if nargin < 3

error(’At least 2 parameters are expected’);

end

% set problem size and defaults

[xsize,dim]=size(X);

radius = 1;

sigma=ones(xsize,1); %uniform local density

scale = 1;

Mass = ones(xsize,1);

edges = 0;

rweak = 0;

vi=size(varargin,2);

i=1;

while i<vi

if strfind(varargin{i},’Radius’)

radius=varargin{i+1};

i=i+2;

elseif strfind(varargin{i},’Scale’)

scale=varargin{i+1};

i=i+2;

elseif strfind(varargin{i},’Sigma’)

sigma=varargin{i+1};

i=i+2;

elseif strfind(varargin{i},’Edges’)

edges=varargin{i+1};
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i=i+2;

elseif strfind(varargin{i},’Mass’)

Mass=varargin{i+1};

i=i+2;

elseif strfind(varargin{i},’Rweak’)

rweak=varargin{i+1};

i=i+2;

else

i=i+1;

end

end

global OPTIONS NUMCLUSTERS DW PLOT RWEAK;

OPTIONS = options;

PLOT = plot;

NUMCLUSTERS = numclusters;

RWEAK = rweak;

color=[0 0 1; %blue

1 0 0; %red

0 1 0; %green

0 0 0; %black

0 1 1; %cyan

1 0 1; %magenta

1 1 0]; %yellow

color=[color; color; color; color];

% -------------------------------------

% define similarity (weight) matrix S(i,j)

% since diag is zero and symmetric we only need upper part

% -------------------------------------

if strfind(OPTIONS,’norm’)

% normalize X vectors

tic

for i=1:xsize

X(i,:)=X(i,:)/norm(X(i,:));

end

sprintf(’normalize %f’,toc)

end
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if strfind(OPTIONS,’gauss’)

% gaussian (adj by sigma)

tic

S=zeros(xsize,xsize);

for i=1:xsize

for j=i+1:xsize

% calculate a local density sigma

sc=min(sigma(i),sigma(j))^2/(sigma(i)*sigma(j));

sc=sc*scale;

% compute inverse gausian distance

S(i,j)=exp(-sc*norm(X(i,:)-X(j,:))^2);

% exclude wts that are too small

if S(i,j) < radius

S(i,j)=0;

end

end

end

sprintf(’gauss mean %f’,mean(mean(S)))

sprintf(’gauss time %f’,toc)

elseif strfind(OPTIONS,’full’)

% fully connected graph wt 1 (adj by sigma)

npt=size(X,1);

% [xdum,edges]=completegraph(npt,0,0,1);

% clear xdum

S=zeros(npt);

for i=1:npt-1

for j=i+1:npt

S(i,j)=scale*min(sigma(i),sigma(j))^2/(sigma(i)*sigma(j));

end

end

elseif strfind(OPTIONS,’edges’)

% edges supplied weight 1 for all edges

if edges == 0

error(’Variable argument Edges is missing’);

end

weights=ones(size(edges,1),1);

S=adjacency(edges,weights);
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S=full(S);

else

% wt 1 if inside radius (adj by sigma)

S=spalloc(xsize,xsize,200*xsize);

for i=1:xsize

for j=i+1:xsize

a=norm(X(i,:)-X(j,:));

if a < radius

S(i,j)=scale*min(sigma(i),sigma(j))^2/(sigma(i)*sigma(j));

end

end

end

end

if strfind(PLOT,’info’)

sprintf(’vertices %f’,xsize)

sprintf(’pct nnz %f’, (nnz(S)*100)/(xsize*xsize))

end

% -----------------------------

% compute dummy node weight

% this to be used later in solve function

% -----------------------------

% edge wt is min of .1 of smallest non zero wt in S or .001

DW=full(min(S(S>0)))*.1;

DW=min(DW,.001);

DW=DW/xsize;

% -------------------------------------

% define Graph (i.e. adjacency matrix)

% -------------------------------------

W=S+S’;

clear S;

% plot graph without edges

if strfind(PLOT,’nodes’)

cdx=ones(xsize,1);

figure

scatter(X(:,1),X(:,2),30,color(cdx,:),’filled’)
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title(’Graph nodes’)

end

% plot graph with edges

if strfind(PLOT,’edges’)

cdx=ones(xsize,1);

figure

i=xsize-1;

gplot2(W,X,3,cdx);

title([’Graph nodes & edges:’ OPTIONS])

end

% --------------------------------

% do kmeans clustering on column vector

% defined by 1st k+1 eigenvectors

% --------------------------------

if strfind(OPTIONS,’kmeans’)

% solve the e-val problem

k1=NUMCLUSTERS+10;

[V,e,eidx]=solve(W,Mass,k1);

% define row vectors of 1st numcluster rows of eigenvectors V

% excluding first 0 eigenvalue

k=numclusters;

yidx=eidx(2:k+1);

pidx=kmeans(V(:,yidx),k,’emptyaction’,’singleton’,’MaxIter’,200);

for i=1:k

partition{i}=find(pidx==i);

end

% plot eigenvalues

if strfind(PLOT,’eig’)

figure

stairs(1:k1,e(1:k1));

title([’Eigenvalues:’ OPTIONS]);

% ploteig(W,V(:,idx),16);

end

end

% -------------------------------------
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% find clusters via successive bicluster

% -------------------------------------

if strfind(OPTIONS,’kmeans’)

else

% put all unconnected vertices in partition 1

% and restrict analysis to remaining vertices

sumW=sum(W);

if sum(sumW==0) ~= 0

partition{1}=find(sumW==0);

partition{2}=find(sumW~=0);

pi=2;

psize=2;

NUMCLUSTERS = NUMCLUSTERS + 1;

else

partition{1}=1:xsize;

pi=1;

psize=1;

end

pnz=pi;

while psize < NUMCLUSTERS

% bicluster least connected cluster

% pass cluster pi to bicluster

idx=partition{pi};

[part1,part2]=bicluster(W(idx,idx),Mass(idx));

% incorporate part1 and part2 into partition

% part1 and part2 are indices wrt idx

% so must convert to indices of original vertices

partition{pi}=idx(part1);

psize = psize + 1;

partition{psize}=idx(part2);

% find least connected cluster

con=zeros(1,psize);

% if partition 1 if for unconnected vertices exclude these

if pnz~=1

con(1)=999;

end

for i=pnz:psize

ps=size(partition{i},2);
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if ps==0

error(’0 partition size in cluster’)

end

ps=ps*(ps-1);

if ps==0 %eliminate single nodes from consideration

con(i)=999;

else %compute connectivity relative to fully connected graph

con(i)= sum(sum(W(partition{i},partition{i})));

con(i)= con(i)/ps;

end

end

% find partition least strongly connected

m=min(con);

pi=find(con==m);

% if equal connectivity then take 1st one

if size(pi,2)>1

pi=pi(1);

end

if strfind(PLOT,’debug’)

con

partition

pi

end

end

end

if strfind(PLOT,’info’)

fprintf(1,’%s \n’,’Partition size and connectivity’)

for i=1:size(partition,2);

fprintf(1,’%5d %8f \n’,size(partition{i},2),con(i))

end

end

% ---------------------------

% plot results of clustering

% ---------------------------

if strfind(PLOT,’clusters’)

figure
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if dim == 2 % vertices lie in a plane

numpart=size(partition,2);

for i=1:numpart

ix=partition{i};

if i < 8

scatter(X(ix,1),X(ix,2),30,color(i,:),’o’,’filled’)

elseif i < 15

scatter(X(ix,1),X(ix,2),30,color(i,:),’*’)

else

scatter(X(ix,1),X(ix,2),20,color(i,:),’s’,’filled’)

end

if i==1

hold on

end

end

title([’Clusters:’ OPTIONS]);

hold off

% figure

% gplot(W,X,’-*’);

else % vertices in more than 2 dimensions

% problem with indexes in plot stmt

% don’t get this after return to calling pgm

% for c = 1:NUMCLUSTERS

% subplot(4,4,c);

% Y=X(partition{c},:);

% plot(Y)

% axis tight

% title([’Clusters:’ OPTIONS]);

% end

end

end

function [part1,part2]=bicluster(W,Mass)

global OPTIONS

% save the initial size

origsize = size(W,1);

% solve the e-val problem
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k1=4;

[V,e,eidx]=solve(W,Mass,k1);

% do a single bicluster

for i=1:k1

if e(i) > 1e-10

part1 = find(V(:,eidx(i))>=-RWEAK);

part2 = find(V(:,eidx(i))<=RWEAK);

% if original partition is same as part1 and part2 then error

if origsize==size(part1,1) & origsize==size(part2,1)

error(’Bicluster error. Same size partitions. r value possibly too large.’);

end

% dummy node may introduce empty partition when graph

% is fully connected to begin with and after node is

% removed from evec, in this case keep looking.

% 1st evec where this does not occur is real fiedler vec

if size(part1,1)>0 & size(part2,1)>0

break

end

end

end

if strfind(PLOT,’eigvec’)

V(:,eidx(i))

end

% plot eigenvalues

if strfind(PLOT,’eigval’)

figure

stairs(1:k1,e(1:k1));

title([’Eigenvalues:’ OPTIONS]);

% ploteig(W,V(:,idx),16);

end

end

function [V,e,eidx]=solve(W,Mass,k1)

global OPTIONS DW

% add dummy node to elim multi components

if strfind(OPTIONS,’full’)
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xs=size(W,1);

else

xs=size(W,1)+1;

for i=1:xs-1

W(i,xs)=DW;

W(xs,i)=DW;

end

W(xs,xs)=0;

end

SD = sum(W,2);

D = sparse(1:xs,1:xs,SD);

L = D - W;

% solve L for 1st (low to high) k1 e-value, e-vectors

% note: Matlab returns e-values in a diag matrix

k1=min(k1,xs);

if strfind(OPTIONS,’eigs’)

opts.issym=1;

opts.disp=0;

warning off MATLAB:nearlySingularMatrix

if strfind(OPTIONS,’ncut’)

[V,E,flag]=eigs(L,D,k1,’sm’,opts);

if flag ~= 0; flag; end

elseif strfind(OPTIONS,’mass’)

% add a dummy mass

if strfind(OPTIONS,’full’)

else

Mass=[Mass; DW]; %dummy mass

end

M=sparse(diag(Mass));

[V,E,flag]=eigs(L,M,k1,’sm’,opts);

if flag ~= 0; flag; end

else

% warning: setting the sigma in eigs too low can result in

% ’matrix is singular to working precision’ and e-val of NaN

% .001 is too low

[V,E,flag]=eigs(L,k1,.01,opts);
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if flag ~= 0; flag; end

end

warning on MATLAB:nearlySingularMatrix

else

L=full(L);

D=full(D);

if strfind(OPTIONS,’ncut’)

[V,E]=eig(L,D);

elseif strfind(OPTIONS,’mass’)

if strfind(OPTIONS,’full’)

else

Mass=[Mass; DW]; %dummy mass

end

M=full(diag(Mass));

[V,E]=eig(L,M);

else

[V,E]=eig(L);

end

end

% force eigenvalues into low to high order

E=sum(E);

[e,eidx]=sort(E);

e(1:k1)

%don’t include the dummy node

if strfind(OPTIONS,’full’)

else

V=V(1:xs-1,:);

end

end

end

92



APPENDIX B. SpectralClusterTest Driver

This is a Matlab program used to produce some of the examples presented in the

paper. It demonstrates how to call the spectralculster function to perform recursive

biclustering.

% spectralcluster tests

test=3;

switch test

case 1

% four clusters normally distributed around

% found points in R^2

randn(’state’,5)

X=sample([2,3],1,50);

Y=sample([8,9],2,80);

X=[X; Y];

Y=sample([2,9],1,30);

X=[X; Y];

Y=sample([5,6],.5,40);

X=[X;Y];

n=size(X,1);

cdx = spectralcluster(X,5,’eig,gauss’,’edges,clusters,info,debug’,’Radius’,.02,’Rweak’,.0001);

case 2

% yeastvalues from Matlab demo "Gene Expression Profile Analysis

% these are after filtering to eliminate genes with low expression

% this is a set of 7 microarrays, taken in a time sequence for

% metabolic shift from fermentation to respiration

load c:\cnsdemo\yeastvalues.mat

X=yeastvalues;

[cdx,con] = spectralcluster(X,16,’eigs,norm’,’info’,’Radius’,.2,’Rweak’,.0000001);

% [cdx,con] = spectralcluster(X,16,’eigs’,’info’,’Radius’,2,’Rweak’,.0000001);

[xsize,dim]=size(X);

% we don’t plot the first partition since this is the collection of

% isolated vertices and carries no obvious information

figure(’Color’,’white’)
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for c = 2:17

subplot(4,4,c-1);

plot(1:dim,X(cdx{c},:))

t=sprintf(’%d %f’,size(cdx{c},2),con(c));

title(t)

axis tight

end

case 3

% 5pt complete + 3pt complete+ 4pt complete

[p1,e1]=complete_graph(5,0,0,2);

[p2,e2]=complete_graph(3,5,0,2);

[p3,e3]=complete_graph(4,0,6,2);

points=[p1; p2; p3;2.5 3];

e2=e2+5;

e3=e3+5+3;

edges=[e1;e2;e3;1 13;7 13;9 13];

cdx = spectralcluster(points,3,’edges,eig,ncut’,’clusters,edges’,’Edges’,edges);

otherwise

end
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APPENDIX C. Subroutines Used by SpectralCluster Funtion

These are the subroutines call by the Matlab spectralcluster function.

function gplot2(W,points,range,Idx,area)

% plot the partition of a graph with different edge weights

%

% inputs W weighted adj matrix

% points x,y coord of graph nodes

% range max graphed size of an edge

% Idx partition of the graph, values 1,2,3,...

% area size of nodes

n=size(points,1);

if nargin < 5

area = 30;

end

if nargin < 4

Idx=ones(1,n);

end

if nargin < 3

range = 3;

end

hold on

% find range of vertex coord and adj axes

xmin=min(points(:,1));

xmax=max(points(:,1));

ymin=min(points(:,2));

ymax=max(points(:,2));

axis([xmin-1 xmax+1 ymin-1 ymax+1] );

% plot nodes

color=[0 0 1; %blue

1 0 0; %red

0 1 0; %green
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0 0 0; %black

0 1 1; %cyan

1 0 1; %magenta

1 1 0]; %yellow

color=[color; color; color; color];

scatter(points(:,1),points(:,2),area,color(Idx,:),’filled’)

% for i=1:n

% plot(points(i,1),points(i,2),’ *b’)

% end

% find edges

[x,y]=find(triu(W));

edges=[x,y];

n=size(edges,1);

% plot edges

idx=triu(W)>0;

xmin=min(W(idx));

xmax=max(W(idx));

for i=1:n

X=[ points(edges(i,1),1) points(edges(i,2),1) ];

Y=[ points(edges(i,1),2) points(edges(i,2),2) ];

% compute line width in points

if xmax==xmin

width = .5;

else

width=(W(edges(i,1),edges(i,2))-xmin)/(xmax-xmin);

width=width*range+.3;

end

line(X,Y,’LineStyle’,’-’,’Color’,’b’,’LineWidth’,width);

end

hold off

function W=adjacency(edges,weights)
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% Produce adjacency matrix of graph

% defined by input parameters edges and weights

% Graph nodes are numbered from 1 to N.

% The highest order node should have an edge.

% Input paramater edges has an entry for each graph edge

% edges(1,1) is node with connection to edges(1,2).

% weights(1) is weight to assign to edge 1.

% Get number of graph nodes

N=max(max(edges));

%Build sparse adjacency matrix

%Note that matrix is symmetric

r=[edges(:,1);edges(:,2)];

c=[edges(:,2);edges(:,1)];

v=[weights weights];

% Build NxN sparse matrix

% W(r(i),c(i))=v(i)

W=sparse(r,c,v,N,N);
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APPENDIX D. List of Genes by Cluster

Gene NCBI locus tags corresponding to the Clusters extracted from the Matlab

demo ”Gene Expression Profile Analysis”.

---- Cluster Sequence 2, Number of Genes 2, Connectivity 1.000000

YGL059W YOR177C

---- Cluster Sequence 3, Number of Genes 3, Connectivity 1.000000

YCR036W YMR104C YOR032C

---- Cluster Sequence 4, Number of Genes 12, Connectivity 0.121212

YBR050C YJL164C YJR008W YKL091C YPL256C

YBR051W YPR002W YBR056W YDL234C YFR055W

YHL039W YGR052W

---- Cluster Sequence 5, Number of Genes 31, Connectivity 0.150538

YAL034C YBL043W YBL049W YBR046C YBR285W

YCR091W YDL204W YDL218W YDR330W YKL093W

YLR164W YBL048W YDR043C YDR313C YGR236C

YIL097W YIL101C YJL067W YJR155W YKL016C

YNR007C YOR097C YPL185W YGR243W YNL093W

YEL039C YGR146C YIL113W YKL217W YMR107W

YPR150W

---- Cluster Sequence 6, Number of Genes 85, Connectivity 0.206162

YAL003W YAL012W YBR048W YCL054W YDL148C

YDR144C YDR384C YEL026W YGR155W YGR159C

YJR063W YLR196W YLL047W YMR131C YNL111C

YNL175C YNL207W YNL303W YNR050C YNR054C

YPL012W YPR137W YCL053C YCLX02C YDL083C
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YDR025W YGR092W YGR160W YHR128W YMR049C

YMR229C YMR290C YNL060C YNL110C YNL132W

YNL182C YNL256W YOR361C YPL043W YPL093W

YPR144C YAL036C YBR247C YDL182W YDR206W

YDR398W YEL040W YER036C YGL076C YGL078C

YGR103W YIL053W YJL122W YJL148W YJR041C

YJR071W YKL009W YKL081W YLR186W YLR056W

YMR037C YMR217W YMR239C YNL075W YNL141W

YNL313C YOR116C YPL126W YPL226W YAL025C

YDL063C YDL213C YGL029W YKL078W YKL082C

YLR009W YLR129W YLL008W YLR355C YLR449W

YMR093W YNL002C YNL120C YNR067C YOL010W

---- Cluster Sequence 7, Number of Genes 6, Connectivity 0.200000

YCR019W YDR436W YJR006W YNR034W YBR069C

YDR101C

---- Cluster Sequence 8, Number of Genes 22, Connectivity 0.129870

YAL054C YER024W YGR067C YLR142W YKR097W

YDR505C YER065C YJL089W YCR005C YFL030W

YIL057C YMR118C YNL117W YNL195C YPL054W

YCR010C YDL215C YDR009W YKL171W YLR377C

YPR030W YDL215C

---- Cluster Sequence 9, Number of Genes 35, Connectivity 0.159664

YBR116C YDR096W YDR216W YML042W YNL009W

YNR002C YPL134C YPL262W YBR117C YDL199C

YDL245C YEL012W YER096W YER098W YGL153W

YGR110W YHL032C YHR096C YJL045W YKL107W

YKL187C YLR267W YOR027W YPL109C YPL135W

YER015W YML054C YOL084W YBR298C YDL233W

YDR262W YGR224W YJR095W YOR019W YPL201C

99



---- Cluster Sequence 10, Number of Genes 23, Connectivity 0.189723

YBR241C YDR148C YDR306C YGR043C YGR201C

YGR231C YJL144W YML131W YOR120W YBR280C

YMR068W YBR203W YDR030C YDR494W YJL170C

YLR254C YLR080W YMR030W YBL086C YDL169C

YDR275W YNR071C YNR073C

---- Cluster Sequence 11, Number of Genes 8, Connectivity 0.250000

YNL174W YPL183C YMR108W YBR155W YJL109C

YKL191W YNL216W YPR136C

---- Cluster Sequence 12, Number of Genes 269, Connectivity 0.118127

YBL015W YBR052C YBR072W YBR169C YBR183W

YDL004W YDL124W YDR070C YDR074W YDR258C

YDR272W YDR358W YEL011W YEL024W YER141W

YFL014W YGR019W YGR111W YIL124W YIL162W

YJL166W YJR104C YKL065C YKL067W YKL085W

YLR168C YLR216C YLL041C YLL023C YLR270W

YLR290C YLR356W YML100W YML120C YMR173W

YMR181C YNL015W YNL037C YNL173C YOL126C

YOL053C YOR052C YOR220W YOR244W YPL186C

YPL230W NORF 7 YAL060W YAR028W YBL050W

YBL064C YBR139W YBR147W YBR214W YBR256C

YCL035C YCR021C YDL181W YDR001C YDR077W

YDR125C YDR171W YDR272W YDR453C YDR529C

YDR533C YER067W YGL037C YGL187C YGL259W

YGR044C YGR088W YGR130C YGR132C YGR182C

YGR250C YHR051W YHR104W YHR195W YIL169C

YIR038C YJL137C YJL161W YJL185C YJR034W

YJR080C YKL036C YKL141W YLR193C YLR217W

YLR219W YLR093C YLR149C YKR058W YKR076W

YLL026W YLR271W YLR295C YML128C YMR105C

YMR311C YNL134C YNL160W YNL200C YNL252C

YNL274C YOL117W YOR031W YOL032W YOL048C

YOL071W YOR049C YOR215C YOR273C YOR289W
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YOR317W YPL087W YPL165C YPR020W YPR026W

YPR098C NORF 4 NORF 8 NORF 54 YBL075C

YBL099W YBL107C YBR054W YBR126C YBR269C

YDL022W YDR032C YDR178W YDR342C YER053C

YFL054C YFR033C YGL006W YGL198W YGR149W

YHL021C YHR087W YJL102W YJR019C YJR073C

YJR096W YKL148C YKL150W YLR178C YLR252W

YLR258W YLR038C YKR067W YLR304C YMR090W

YMR110C YMR133W YMR145C YMR196W YMR271C

YNL045W YNL115C YNL305C YOR136W YOR178C

YOR374W YPL004C YPL078C YPL154C YPL196W

YPR149W YDR258C YAL017W YBL030C YBL038W

YBL078C YBL100C YBL108W YBR101C YBR149W

YBR222C YBR230C YCL025C YCR097W YDL021W

YDL023C YDL067C YDL091C YDR031W YDR059C

YDR085C YDR231C YDR277C YDR329C YDR343C

YDR377W YDR513W YER035W YER079W YER150W

YER158C YER182W YFR015C YGL045W YGL047W

YGL121C YGL191W YGL199C YGR008C YGR028W

YGR070W YGR142W YGR174C YGR194C YGR238C

YGR244C YGR248W YHL024W YHR016C YHR092C

YHR209W YIL087C YIL107C YJL079C YJL103C

YJL151C YJL155C YJR048W YJR121W YKL026C

YKL151C YKL193C YKR016W YKR046C YLR251W

YLR081W YLR299W YLR327C YLR345W YLR395C

YLR423C YML004C YMR031C YMR056C YMR081C

YMR136W YMR170C YMR188C YMR195W YMR197C

YMR250W YMR297W YNL052W YNL100W YNL144C

YNL194C YNR001C YOL153C YOR035C YOR041C

YOL083W YOR065W YOR089C YOR161C YOR347C

YPL123C YPL223C YPR184W NORF 46

---- Cluster Sequence 13, Number of Genes 143, Connectivity 0.140451

YAR073W YBR092C YBR187W YBR189W YBR191W

YDL082W YDL130W YDR382W YDR450W YEL054C

YER070W YER074W YER117W YGR085C YHL001W

YHL033C YHR141C YHR216W YIL069C YJL136C
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YJL190C YLR198C YLR212C YLL045C YLR044C

YLR048W YLR076C YKR057W YKR059W YLR264W

YLR340W YLR384C YLR432W YMR121C YNL013C

YNL247W YNL301C YNL327W YOL120C YOR224C

YOR310C YOR312C YPL142C YPL160W YPR145W

YBL024W YDR165W YDR341C YDR365C YER002W

YGL135W YGR034W YHR215W YIL018W YIL052C

YJL189W YKL181W YLR175W YLL044W YLR029C

YLR075W YLR339C YLR367W YLR409C YLR413W

YML123C YNL178W YNL302C YNR053C YOL121C

YOL127W YOL077C YOR153W YOR335C YOR369C

YAL038W YBL027W YBR032W YBR106W YBR181C

YBR249C YDL136W YDL208W YDR012W YDR060W

YDR064W YDR418W YER131W YGL030W YGL102C

YHL015W YHR089C YHR208W YLR180W YLR060W

YLR062C YLR344W YLR372W YLR448W YML063W

YMR318C YNL065W YNL069C YNL119W YOR234C

YPL198W YPL220W NORF 17 YBL076C YDL167C

YDR037W YDR321W YDR417C YDR447C YDR449C

YDR471W YER110C YFR031BC YGL031C YGL103W

YGL123W YGR148C YGR214W YGR264C YHR203C

YIL133C YJL177W YJR123W YJR145C YKL006W

YLR249W YLR325C YLR441C YMR242C YNL096C

YOL040C YOR063W YOR309C YPL081W YPL131W

YPR102C YPR132W NORF 20

---- Cluster Sequence 14, Number of Genes 10, Connectivity 0.466667

YBL045C YBR067C YIL125W YJL163C YKL109W

YLR173W YOL053W YGL192W YMR191W YBR039W

---- Cluster Sequence 15, Number of Genes 9, Connectivity 0.138889

YCLX09W YPR043W YBR218C YLR341W YPR116W

YNL067W YDR039C YDR491C YGR094W
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---- Cluster Sequence 16, Number of Genes 13, Connectivity 0.269231

YAL026C YAR027W YKL035W YER044C YDR516C

YFR053C YKL142W YMR278W YOL082W YIL111W

YKL103C YLR257W YOR285W

---- Cluster Sequence 17, Number of Genes 4, Connectivity 0.333333

YGL158W YCR039C YMR232W YLR297W

end

103



REFERENCES

[1] Charles J. Alpert, Andrew B. Kahng, and So-Zen Yao. Spectral partitioning
with multiple eigenvectors. Discrete Applied Mathematics, 90:3–26, 1999.

[2] Charles J. Alpert and So-Zen Yao. Spectral partitioning: The more eigenvectors,
the better. In Proc. ACM/IEEE Design Automation Conf, pages 195–200, 1994.

[3] C. G. Baker, U. L. Hetmaniuk, R. B. Lehoucq, and H. K. Thornquist. Anasazi
software for the numerical solution of large-scale eigenvalue problems. ACM
Transactions on Mathematical Software, 36(3):13:1–13:??, July 2009.

[4] Turker Biyikoglu, Josef Leydold, and Peter F. Stadler. Laplacian Eigenvectors
of Graphs. Springer-Verlag, Berlin Heidelberg, 2007.

[5] Benjamin Milo Bolstad. Low-level Analysis of High-density Oligonucleotide Ar-
ray Data. PhD thesis, University of Waikato, 2004.

[6] Edited by Charles-Edmond BIchot and Patrick Siarry. Graph Partitioning. Wi-
ley, New York, 2011.

[7] Tony F. Chan, Tony Chan Ciarlet, and W. K. Szeto. On the optimality of
the median cut spectral bisection graph partitioning method. SIAM Journal on
Scientific Computing, 18:943–948, 1997.

[8] Duhong Chen, J. Gordon Burleigh, and David Fernandez-Baca. Spectral parti-
tioning of phylogenetic data sets based on compatibility. Syst. Biol., 56(4):623–
632, 2007.

[9] S.Y. Cheng. Eigenfunctions and nodal sets. Comment. Math. Helvetici, 51:43–
55, 1976.

[10] Yun Chi, Xiaodan Song, Koji Hino, and Belle L. Tseng. Evolutionary spectral
clustering by incorporating temporal smoothness. In Proceedings of the 13th
ACM SIGKDD international conference on Knowledge discovery and data min-
ing, KDD ’07, pages 153–162, New York, NY, USA, 2007. ACM.

[11] Fan R. K. Chung. Spectral Graph Theory, chapter 2.2. A.M.A. CBMS, Provi-
dence, Rhode Island, 1997.

[12] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms,
2nd Edition. MIT Press, Cambridge, Massachusetts, 2001.

[13] R. Courant and D. Hilbert. Methods of Mathematical Physics, Vol. 1. Inter-
science, New York, 1953.

104



[14] E. Brian Davies, Graham M.L. Gladwell, Josef Leydold, and Peter F. Stadler.
Discrete nodal domain theorems. Linear Algebra and its Applications, 336:51–60,
2001.

[15] Harry F. Davis. Fourier Series and Orthogonal Functions, chapter 4.2. Dover
Publications, Inc., New York, 1963.

[16] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. A unified view of kernal
k-means, spectral clustering and graph cuts. UTCS Technical Report TR-04-25,
2005.

[17] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts with-
out eigenvectors: A multilevel approach. IEEE Trans. Pattern Anal. Mach.
Intell, 29, 2007.

[18] Chris Ding, Xiaofeng He, and Horst D. Simon. On the equivalence of nonnegative
matrix factorization and spectral clustering. In Proc. SIAM Data Mining Conf,
pages 606–610, 2005.

[19] Chris Ding, Xiaofeng He, and Hongyuan Zha. A specral method to separate
disconnected and nearly-disconnected web graph components. Proc 7th Int’l
Conf. on Knowledge Discovery and Data Mining, KDD 2001:275–280, 2001.

[20] W. Donath and A. Hoffman. Algorithms for partitioning graphs and computer
logic based on eigenvectors of connection matrices. IBM Technical Disclosure
Bulletin, 15 no.3:938–944, 1972.

[21] W. Donath and A. Hoffman. Lower bounds for the partitioning of graphs. IBM
Journal of Research and Development, pages 420–425, 1973.

[22] Art M. Duval and Victor Reiner. Perron-frobenius type results and discrete
versions of nodal domain theorems. Linear Algebra and its Applications, 294:259–
268, 1999.

[23] Stanley J. Farlow. Partial Differential Equations for Scientists and Engineers.
Dover Publications, Inc., New York, 1982.

[24] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient graph-based image
segmentation. International Journal of Computer Vision, 59 no. 2:167–181, 2004.

[25] Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical
Journal, 23 no.2:298–305, 1973.

[26] Miroslav Fiedler. A property of eigenvectors of nonnegative symmetric matrices
and its applications to graph theory. Czech. Math. J., 25, no. 100:619–633, 1975.

[27] Miroslav Fiedler. Special Matrices and Their Applications in Numerical Mathe-
matics. Dover edition, Boston, 2008.

105



[28] Igor Fischer and Jan Poland. New methods for spectral clustering. Dalle Molle
Institute for Artificial Intelligence, 2004.

[29] J. Friedman. Some geometric aspects of graphs and their eigenfunctions. Duke
Math J., 69(3):487–525, 1993.

[30] G.M.L. Gladwell and H. Zhu. Courant’s nodal line theorem and its discrete
counterparts. Q. Jl Mech. Appl. Math., 55:1–15, 2002.

[31] Leo Grady. Graph analysis toolbox matlab code. http://eslab.bu.edu/

software/graphanalysis/, August 2003.

[32] Leo Grady and Eric L. Schwartz. Isoperimetric graph partitioning for image
segmentation. IEEE Trans. on Pat. Anal. and Mach. Int, 28:469–475, 2006.

[33] D.H. Griffel. Applied Functional Analysis. Halsted Press, New York, 1981.

[34] Ji-Ming Guo. The algebraic connectivity of graphs under perturbation. Linear
Algebra and its Applications, 433(6):1148 – 1153, 2010.

[35] U. Hetmaniuk and R. Lehoucq. Basis selection in lobpcg. J. Comput. Phys.,
218:324–332, 2006.

[36] Desmond J. Higham, Gabriela Kalna, and Milla Kibble. Spectral clustering and
its use in bioinformatics. Journal of Computational and Applied Mathematics,
204:25–37, 2007.

[37] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University
Press, New York, NY, 2005.

[38] D. Jerison and C. Kenig. Unique continuation and absence of positive eigenvalues
for schrodinger operators. Ann. Math., 121:159–268, 1999.

[39] Claes Johnson. Numerical Solutions of Partial Differential Equations by the
Finite Element Method, chapter 24.

[40] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good, bad
and spectral. Journal of the ACM, 51 no. 3:497–515, 2004.

[41] A. V. Knyazev, M. E. Argentati, I. Lashuk, and E. E. Ovtchinnikov. Block
locally optimal preconditioned eigenvalue xolvers (blopex) in hypre and petsc.
SIAM J. Sci. Comput, 29:2224–2239, 2007.

[42] Andrew V. Knyazev. Preconditioned eigensolvers – an oxymoron? Electron.
Trans. Numer. Anal., 7:104–123, 1998.

[43] Andrew V. Knyazev. Toward the optimal preconditioned eigensolver: Locally
optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput,
23:517–541, 2001.

106

http://eslab.bu.edu/software/graphanalysis/
http://eslab.bu.edu/software/graphanalysis/


[44] Andrew V. Knyazev and Merico E. Argentati. Implementation of a precondi-
tioned eigensolver using hypre. Technical Report UCD-CCM 220, Center for
Computational Mathematics, University of Colorado Denver, 2005.

[45] Anna Matsekh, Alexei Skurikhin, Lakshman Prasad, and Edward Rosten. Nu-
merical aspects of spectral segmentation. In Applied Parallel and Scientific Com-
puting, volume LNCS 7133, pages 193–203, 2012.

[46] Marina Meila and Jianbo Shi. Learning segmentation by random walks. In In
Advances in Neural Information Processing, pages 470–477. MIT Press, 2000.

[47] Marina Meila and Jianbo Shi. A random walks view of spectral segmentation.
In AI and STATISTICS (AISTATS) 2001, 2001.

[48] Boaz Nadler, Stphane Lafon, Ronald R. Coifman, and Ioannis G. Kevrekidis.
Diffusion maps, spectral clustering and eigenfunctions of fokker-planck operators.
In in Advances in Neural Information Processing Systems 18, pages 955–962.
MIT Press, 2005.

[49] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Anal-
ysis and an algorithm. In ADVANCES IN NEURAL INFORMATION PRO-
CESSING SYSTEMS, pages 849–856. MIT Press, 2001.

[50] Pekka Orponen and Satu Elisa Schaeffer. Local clustering of large graphs by
approximate fiedler vectors. In Proceedings of the Fourth International Workshop
on Efficient and Experimental Algorithms (WEA05), volume 3505 of Lecture
Notes in Computer Science, pages 524–533. Springer-Verlag GmbH, 2005.

[51] Beresford N. Parlett. The Symmetric Eigenvalue Problem. Prentice–Hall, Inc.,
Englewood Cliffs, N.J., 1980.

[52] Eitan Sharon, Meirav Galun, Dahlia Sharon, Ronen Basri, and Achi Brandt.
Hierarchy and adaptivity in segmenting visual scenes. Nature, 442(17):810–813,
2006.

[53] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 22(8):888–905, August
2000.

[54] Andreas Stathopoulos and James R. McCombs. PRIMME: PReconditioned Iter-
ative MultiMethod Eigensolver: Methods and software description. ACM Trans-
actions on Mathematical Software, 37(2):21:1–21:30, April 2010.

[55] Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. J. ACM,
44(4):585–591, July 1997.

[56] Ulrike von Luxburg. A tutorial on spectral clustering. Technical Report No.
Tr-149, Max Planck Institute for Biological Cybernetics, August 2006.

107



[57] Y. Weiss. Segmentation using eigenvectors: A unifying view. Internation Con-
ference on Computer Vision, pages 974–982, September 1999.

[58] Scott White and Padhraic Smyth. A spectral clustering approach to finding
communities in graphs. In Siam Conference on Data Mining, 2005.

[59] Lihi Zelnik-manor and Pietro Perona. Self-tuning spectral clustering. In Ad-
vances in Neural Information Processing Systems 17, pages 1601–1608. MIT
Press, 2004.

[60] Shu-BO Zhang, Song-Yu Zhou, Jian-GuO He, and Jian-Huang Lai. Phylogeny
inference based on spectral graph clustering. Journal of Computational Biology,
18 no. 4:627–637, 2011.

108


	Figures
	Tables
	Spectral Clustering and Image Segmentation
	Introduction
	Graph Laplacian
	Combinatorial Model
	Overview of Literature
	Vibrational Model
	Fiedler Theorems
	An Extension of Fiedlers Theorem
	Effect of mass matrix on segmentation
	Image Segmentation
	Edge Weights
	Spectral Clustering Algorithm
	Tuning the Edge Weight Parameters
	Eigenvalue Solvers
	Nodal Domain Theorems
	Summary

	MicroArrays
	Introduction
	What is a Microarray?
	How is Microarray data analyzed?
	Normalization of data
	Disconnected Graphs
	Successive BiClustering
	Weight construction
	"Toy" experiments
	Analysis of real microarray experiments
	The Software

	Blopex
	Introduction
	The Problem
	Current Software
	LOBPCG
	BLOPEX Software
	Structure
	Abstract Code
	Drivers and Interfaces

	The Google Source Site
	Environments BLOPEX Tested On
	Numerical Results
	Summary

	SpectralCluster Function
	SpectralClusterTest Driver
	Subroutines Used by SpectralCluster Funtion
	List of Genes by Cluster

	References


