MODELS FOR SPECTRAL CLUSTERING AND THEIR APPLICATIONS
by
Donald, F. McCuan
B.A., Austin College, 1972

A thesis submitted to the
Faculty of the Graduate School of the
University of Colorado in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
Applied Mathematics

2012

This thesis for the Doctor of Philosophy degree by
Donald, F. McCuan

has been approved

by

Andrew Knyazev, Advisor and Chair
Steven Billups
Tzu Phang
Julien Langou

Weldon Lodwick

Date

McCuan, Donald, F. (Ph.D.; Applied Mathematics)
Models for Spectral Clustering and Their Applications

Thesis directed by Professor Andrew Knyazev

ABSTRACT

In this dissertation the concept of spectral clustering will be examined. We will
start by discussing biclustering of images via spectral clustering and give a justification
for this technique by analogy to vibrational problems that is independent of that given
by relaxation of a combinatorial optimization problem. The importance in clustering
of the Fiedler vector and some theorems by Fiedler are emphasized. We will extend
Fiedlers theorem to the case of the generalized eigenvalue problem.

By examining the application of these theories to the clustering problem we hope
to develop a better understanding of the eigenfunctions and their use in clustering.
Practical problems with clustering that occur due to construction of edge weights are
studied.

Courants Nodal Domains Theorem (CNLT) as an analog of the Fiedler vector for
eigenvectors of higher dimension are studied and the literature for discrete CNLT's
are reviewed. A new definition for r-weak sign graphs is presented and a modified
discrete CNLT theorem for r-weak sign graphs is introduced. The application of these
to spectral clustering is discussed.

The discussion of spectral clustering is continued via an examination of clustering
on DNA micro arrays. This allows us to develop an algorithm for successive biclus-
tering. In this we develop a new technique and theorem for dealing with disconnected
graph components. All of this is incorporated in new MATLAB software. Results of
clustering using real micro array data is presented.

The last section deals with the software package Block Locally Optimal Precondi-

tioned Eigenvalue Xolver (BLOPEX) which as part of the Authors graduate work was
upgraded to Version 1.1. BLOPEX implements the Locally Optimal BLock Precon-
ditioned Conjugate Gradient (LOBPCG) method for solution of very large, sparse,
symmetric (or Hermitian) generalized eigenvalue problems.

Version 1.1 of BLOPEX adds (amongst other things) support for complex ma-
trices and 64bit integers. BLOPEX provides interfaces to independently developed
software packages such as PETSc and Hypre which provide high quality precondition-
ers and parallel MPI-based processing support. There is also support for execution
of BLOPEX from MATLAB and stand alone C programs. This was a multi person
effort. The Authors contribution was in recoding the abstract routines and PETSc
and Hypre interfaces for the new functionality, the development of a new complex
driver test program, and aid and assistance in testing, debugging and documentation
of all interfaces.

We will describe the BLOPEX software, design decisions, the LOBPCG algorithm
as implemented, and all of the various interfaces. Some numerical results will be

presented.

The form and content of this abstract are approved. I recommend its publication.

Approved: Andrew Knyazev

DEDICATION

I dedicate this thesis to my wife Carolyn, and the volunteers and staff of the Denver
Museum of Natural History who have given me encouragement over the many years

of this endeavor.

ACKNOWLEDGMENT

Foremost, I would like to to thank my advisor, Andrew Knyazev, for his support
and motivation. Also, I thank my other Professors at UCD who renewed by interest
in Mathematics, and raised my knowledge and understanding of the subject to new

levels.

TABLE OF CONTENTS

Figures X

Tables o xii

Chapter

1. Spectral Clustering and Image Segmentation 1
1.1 Introduction 1
1.2 Graph Laplacian 2
1.3 Combinatorial Model 3
1.4 Overview of Literature 6
1.5 Vibrational Model 10
1.6 Fiedler Theorems 12
1.7 An Extension of Fiedlers Theorem 15
1.8 Effect of mass matrix on segmentation 18
1.9 Image Segmentation 20
1.10 Edge Weightso 21
1.11 Spectral Clustering Algorithm 22
1.12 Tuning the Edge Weight Parameters 23
1.13 Eigenvalue Solvers 27
1.14 Nodal Domain Theorems 28
115 Summary 37

2. MicroArrays 38
2.1 Introduction 38
2.2 What is a Microarray? o 38
2.3 How is Microarray data analyzed? 42
2.4 Normalization of data 0oL 43
2.5 Disconnected Graphs Lo 43
2.6 Successive BiClustering oL 51

2.7 Weight construction oo 53

2.8 7Toy” experiments 54

2.9 Analysis of real microarray experiments 54

2.10 The Software 55

3. Blopex 59

3.1 Introduction 59

3.2 The Problem 60

3.3 Current Software 60

3.4 LOBPCG 62

3.5 BLOPEX Software. 63

3.5.1 Structure 64

3.5.2 Abstract Code 65

3.5.2.1 Algorithms 66

3.5.2.2 DataTypes oo 70

3.5.2.3 Parameters oL 72

3.5.3 Drivers and Interfaces 74

3531 PETSc 75

3532 HYPRE 76

3533 Matlab 76

3.5.34 Serial 76

3.6 The Google Source Site 7

3.7 Environments BLOPEX Tested On 7

3.8 Numerical Results 0 oL 7

3.9 Summary . . .o 79
Appendix

A. SpectralCluster Function 81

B. SpectralClusterTest Driver 93

C. Subroutines Used by SpectralCluster Funtion
D. List of Genes by Cluster

References

X

FIGURES

Figure

1.1 Partition of a Graph by Vertex Cuts. All edge weights are equal.

1.2 Ratiocut Penalty
1.3 Fiedler Vector fora Tree
1.4 Fiedler Vector for a Lattice,
1.5 Fiedler Vector for a Wheel 0oL
1.6 Observation 2: Separation of Two Highest Masses
1.7 Observation 3: Largest Mass in a Cluster by Itself.
1.8 Observation 3: When Largest Mass can’t be in a Cluster By Itself
1.9 Observation 4: Smallest Mass never in a cluster by itself
1.10 Labeling of Pixels in an Image
1.11 Base Image for Analysis L
1.12 Initial Analysis
1.13 Effect of increasing ValScale L.
1.14 Effect of geomSecale
1.15 Effect of Islands
1.16 Effect of Epsilon
1.17 Poor Quality Fiedler Vector produced by too small a shift
1.18 Examples of Strong and Weak Sign Graphs
1.19 Strong Sign Graphs exceeding eigenvector number
1.20 Sign Graphs decreasing in numbero
1.21 An example of R-weak Sign Graphs
2.1 Gene Expressiono
2.2 An Affymetrix GeneChipo oL
2.3 Genes with correlated expression levels00
2.4 Effect of normalization on clusters

2.5

2.6
2.7
3.1

A connected and unconnected graph and the effect of a connecting node

(dum) on their eigenpairs Lo 48
An example of successive bicluster L. 52
Microarray data clustering result 0L 56
Structure of BLOPEX Functions 65

x1

TABLES

Table
3.1 Matrices Analyzed
3.2 Single Processor Setup and Solution Time

3.3 Multiple Processor Setup and Solution Time for finan512

xii

1. Spectral Clustering and Image Segmentation
1.1 Introduction

We are concerned with the problem of partitioning an image into two parts (a
bicluster) with the objective that the elements (image pixels) within each part are
more similar to each other than elements between parts tend to be. This statement
while simple has left undefined such concepts as similarity and measures of whether
any particular bicluster is better than another.

There is a large literature which takes the approach of defining this problem
as a biclustering of a weighted graph where the biclustering is performed by mini-
mization of some vertex cut function; for example see [53],[56]. These problems can
be expressed as a minimization under constraints of the Rayleigh-Ritz ratio of the
associated graph Laplacian matrix.

This combinatorial problem is NP complete and to solve it the constraints are
relaxed, leading to a problem of solving for an eigenvector of the second largest
eigenvalue of the graph Laplacian, commonly referred to as the Fiedler Vector. Then
this eigenvector is used to separate the graphs vertices into two groups. This is the
technique of spectral clustering. We will discuss the graph Laplacian in Section 1.2
which is background for the rest of the paper.

Bichot [6] attributes the origin of spectral clustering to Donath and Hoffman [20]
1970. The concept is simple. Its complexity lies in understanding why it works.

Spectral clustering does not always give good solutions to the original combina-
torial problem. We examine some of these issues in Section 1.3 and will present an
alternative justification for spectral clustering in Section 1.5.

But, before this will give a brief overview of the literature in Section 1.4 which
examines the field of combinatorial and spectral clustering.

Spectral clustering involves using the Fiedler vector to create a bipartition of

the graph. Some theorems by Fiedler are needed to understand the character of the

1

Fiedler vector and how this relates to clustering. These theorems are reviewed in
Section 1.6 and we expand the scope of one of these theorems in Section 1.7.

Having expanded the scope of the Theorems we examine numerical results for the
generalized eigenvalue problem using mass matrices.

We then examine the problem of image segmentation in Section 1.9 and discuss
generation of edge weights in Section 1.10.

We define our algorithm for image biclustering in Section 1.11. Then in Sec-
tion 1.12 give examples of how weight parameters can effect clustering, connect this
with the Fiedler theorems, and show how problems can occur.

This is followed in Section 1.13 by a discussion of eigenvalue solvers and the need
for solvers for eigenpairs of large sparse matrices for the image segmentation problems.

Nodal sets and sign graph theory is reviewed in Section 1.14 where we derive an
extension of the discrete nodal domain theorem that includes Fiedlers theorem as a
special case.

We summarize in the last section.

1.2 Graph Laplacian

Let G = (V, E) denote a graph where V is its vertex set, E is its edge set, and
the number of vertices |V| = n. We number the vertices of G’ and this index is then
used to represent the vertices V. The edges of GG are undirected and have no loops.

The n x n adjacency matrix A of G has entries representing the edges E of G.
If vertices 7 and j have an edge between them then the element a;; of A has a real
positive weight assigned to that edge and zero otherwise. The degree matrix D for G
is a diagonal matrix where d; = > jev @ij-

Definition 1.1 The unnormalized graph Laplacian is L = D — A.

This is the discrete analog of the continuous Laplacian A =), 6%1_. A justifica-

tion for this can be found in [4].

The discrete Laplacian has the following properties [56]:

e it is real symmetric,

e positive semi definite,

e its smallest eigenvalue is 0,

o I=(1,1,...,1)T is an eigenvector for eigenvalue 0, and

e the multiplicity of 0 is the number of connected components of the graph.

We note here the existence of normalized graph Laplacians, and will have more

to say about them later.
Definition 1.2 The symmetric normalized graph Laplacian is Lgy,;, = D :LD"3.

Definition 1.3 The random walk graph Laplacian is Ly, = D™1L.

1.3 Combinatorial Model

One approach to clustering is to minimize some function that reflects how closely
the clusters are connected. For example in Figure 1.1 vertex cuts are used to partition
the graph into two subgraphs A and B where |A| + |B| = |V]. A cut is assigned a
value cut(A, B) =} ;c 4 icp @ij- This is unsatisfactory in many cases where subgraphs
that are highly unbalanced are produced. For example Cut 1 in Figure 1.1 has the
same cut value as that of Cut 2.

To overcome this the following ratios are often used [53],[56].

cut(A,B) cut(A, B)
|A] |Bi

Ratiocut(A, B) =

and

cut(A, B) n cut(A, B)

Neut(A, B) = =y + —ol(B)

where wvol(A) = Z dy;

€A

Cut 1 (3)

| _of %
|

(o)
< n

Figure 1.1: Partition of a Graph by Vertex Cuts. All edge weights are equal.

Assuming the graph is connected (more on this in Section 1.6), it can be shown

[56] that minimizing the Ratiocut is equivalent to

1B|/|A]iti € A
min f'Lf where f;i=
i —|A|/|B|ifi € B
Ifl=v

where we will refer to f as the combinatorial solution.
This problem is NP complete (see Appendix of [53]), but if the constraints are

relaxed it becomes

I fll=vn
The term f'Lf is the numerator of the Rayleigh-Ritz Ratio and the Rayleigh Ritz

characterization of eigenvalues [37] gives the solution as the 2nd smallest eigenvalue
of L with f as its eigenvector. An eigenvector of the 2nd smallest eigenvalue (which
could have multiplicity greater than 1) is called the Fiedler vector.

A similar analysis can be performed for Ncut [53].

A spectral clustering analysis then consists of finding the Fiedler vector and using

it to produce the clusters A and B. Commonly, these are chosen as A = {i|f; > 0}
4

and B = {i|f; < 0}. This method is derived by analogy to the combinatorial solution
of f.
There are some questions that can be raised at this point.

e How closely does the relaxed solution come to the actual solution?

Graphs can be constructed where the difference in cut values is arbitrarily large
[56]. This might be expected since the original problem is NP complete, the relaxed

problem is not, and we have placed no restrictions on the type of graphs involved.
e Even if we have a solution that is close to optimal, how balanced is it?

We make the following observation. The balancing term in Ratiocut is
ﬁ + ﬁ. If we plot this for various values of |A| and n (Figure 1.2) we see a large
penalty near the extremes which is desirable but a very small penalty for values of

A — 5 this can be achieved even

|A| between. So if we want a balance closer to
when |A| >> | B|. This is particularly true when there are a large number of vertices

which is usually the case for images.

14

121

1/]A| + 1/|B|

0 02 04 06 08 1
|Alin

Figure 1.2: Ratiocut Penalty

e What should we do with vertices where f; = 07 This situation is precluded in

the original combinatorial solution for f.

The choice of putting vertex i where f; = 0 into cluster A along with f; > 0 is

arbitrary. We could just as well have chosen to place it in cluster B.
e Are clusters connected?

We will see in Section 1.6 that one of the clusters will always be connected but
the other may not be. This upsets our intuition about what a cluster should be. We
expect the nodes within a cluster to have some similarity, but if the cluster itself is not
connected how can this be. Also, this is a practical issue if we should do successive
biclusters to break an image into multiple clusters. We want to start our algorithm
with a connected graph and this might no longer be the case. Why this is the case
will be explained in Section 1.6.

In an attempt to overcome these issues and force the spectral clustering results
to give clusters with better Ratiocut values some algorithms resort to adhoc methods
such as looking for a better Ratiocut around zero; for example A = {i|f; > r} and
B = {i|f; < r} where r > 0. The result may still not be optimal and one of the
clusters could still not be connected.

These kind of problems have led us to adopt an alternative justification for spec-

tral clustering and an algorithm which reflects this.

1.4 Overview of Literature

The clustering literature, with connections to spectral clustering, is primarily
concerned with the solution of a combinatorial problem. Since this problem turns
out to be NP hard, its solution is attempted via relaxation to a spectral clustering
problem.

The literature is generally concerned with one or more of the following issues:

e alternatives to spectral clustering,

justification of spectral clustering,

edge weight selection,

how to use of eigenvectors to obtain clusters,

how many clusters to construct, and

applications.

An excellent starting point for the study of spectral clustering is the tutorial
by Ulrike von Luxburg [56]. After that, possibly the most referenced paper on the
subject is by Shi and Malik [53].

There are alternatives to spectral clustering. An algorithm for finding bipartitions
with minimum cut weight is presented by Stoer and Wagner [55]. However, this
algorithm does not address the problem of finding balanced partitions.

Some authors make use of several eigenvectors, collect these into a matrix, and
partition based on the row vectors.

Alpert and Yao [2] construct a min-cut problem where cluster volumes must fall
within predefined ranges. They then define a max-min k-way vector partitioning
problem based on the eigenvector rows, and show that these problems are equivalent
when all eigenvectors are used. Of course in this case, since min-cut is NP hard,
their vector partitioning must also be NP hard. No justification, except for numerical
experiments, is presented when not using all eigenvectors.

Alpert, Kahng, and Yao [1] define their MELO (multiple eigenvector linear or-
derings) algorithm, which uses multiple eigenvectors to produce a bicluster.

White and Smyth [58] define a new cost function, referred to as the @ function,
which is a measure of the deviation between the probability that both ends of an
edge lie in the same cluster, and the square of the probability that either end of an

edge lies in the cluster. Minimization of the Q function is a problem whose relaxation

7

results in (approximately) L,,, the random walk Laplacian. K-means clustering is
then applied to the rows of some of the eigenvectors of L,,,. The best clustering is
computed by varying K and computing Q for each partition produced.

Another probabilistic approach is done by Meila and Shi [46] [47]. They define
a cost function via a random walk and connect this to the NCUT balanced cost
function. They then present a machine learning algorithm to determine edge weights,
trained by predefined image clusters.

While Meila and Shi’s random walk development is fairly intuitive, a more obscure
attempt at justifying spectral clustering via the random walk Laplacian, is done by
Nadler, Lafon, Coifman, and Kevrekidis [48]. This is based on an assumption that the
graph vertices are distributed according to the probability distribution, p(z) = e~V®)
where U(x) is a potential.

Another discrete cost function is presented in the paper by Kanna, Vempala, and
Vetta [40]. They define an (ae€) bi-criteria, relax the minimization problem, and then
show that spectral clustering has a worst case approximation guarantee with respect
to the (a,e) measure. While interesting, it does not seem to be that practical.

Other attempts to place bounds on the cluster results with respect to a cost
function date back to Donath and Hoffman [21]. They set a lower bound on the sum
of the edge cuts, where the number of clusters, and the number of vertices in the
clusters was preselected. So, again, not that practical.

Ng, Jordan, and Weiss [49] use a typical approach to spectral clustering; i.e. the
symmetric Laplacian and k-means clustering applied to multiple eigenvectors. They
then use the Cheeger constant [11] of the clusters to construct criteria assumptions. If
these assumptions are met, they show that there exists orthogonal vectors in k space
such that rows of the eigenvectors are ”close” to them.

Sharon, Galun, Sharon, Basri, and Brandt [52] apply spectral clustering to image

segmentation. They present a multigrid approach (see also Bichot [6]) where spectral

clustering (Ncut cost function) plays the part of bi-clustering at each coarseness level.

Dhillon, Guan, and Kulis [17] [16] give another multigrid approach using the
weighted Kernal k-means algorithm. This projects the data vectors onto a higher
dimension space where k-means does the clustering for the refinement steps. Spec-
tral clustering is applied at the coarsest level. They apply this technique to image
segmentation and gene networks.

A technique that is not spectral based, is presented by Felzenszwalb and Utten-
locher [24]. This is applied to image segmentation, and while not spectral in nature,
has an interesting approach for coarsening of the image. They define a concept of a
segmentation being too fine or too coarse. A lumping procedure is then applied to
lump vertices into segments that are neither too fine or too coarse.

Orponen and Schaeffer [50], while accepting the spectral clustering method in
principle, seek to avoid the solution of the eigenvalue problem, by construction of an
approximate Fiedler vector. This is done by minimization of the Rayleigh Quotient
of a reduced Dirchlet matrix via gradient descent.

The issue of round off error in computation of the Fiedler vector via Krylov
subspaces is taken up by Matsekh, Skurikhin, and Rosten [45]. They observe that
round off error can make the Fiedler vector unsuitable for image segmentation. We
address this issue later this thesis.

Clustering the Fiedler vector is analyzed by Chan, Ciarlet, and Szeto [7]. Their
issue is, what is the best way to split the Fiedler vector? They show that a median cut
on the second eigenvector is optimal, in the sense that the partition vector induced
by this is the closest partition vector to the second eigenvector. What they actually
prove, is that the median cut on any vector is optimal, to that vector. So, it’s not
really a justification for using the median cut for segmentation.

Ding, He, and Simon [18] show the equivalence of symmetric Nonnegative Matrix

Factorization (NMF) and Kernal k-means, and then the equivalence of Ncut and

NMF'. The definition of Ncut they use is not the same as that defined by Shi and
Malik. The NMF of a p x n matrix X is X ~ FGT when F is p x k and G is k x n.

Another clustering approach, that is entirely different, is presented by Grady and
Schwartz [32]. They start with the RatioCut problem and convert to an isoperimetric
problem which can be solved as a solution to a linear system.

A very interesting paper comes from Zelnik-Manor and Perona [59]. They use
the inverse Gausian to compute weights, but associate a different scaling factor with
each vertex. The scaling factor reflects the density of vertices at each vertex. This
allows for handling of multi-scale data and background clutter. They also propose a
cost function for automatic determination of the number of clusters.

Similarly, Fischer and Poland [28], also adjust the scaling factor for each ver-
tex. But, their technique for doing so is different. They also propose use of k-lines
clustering of the eigenvector rows instead of k-means.

We deal with image segmentation and micro-array analysis in this paper. Another
application that is only starting to receive some attention is the application of spectral
clustering to Phylogenetics [10] [8] [60]. Here spectral clustering has been proposed
as an alternative to maximum parsimony, maximum likelihood, and neighbor-joining.
The data, so far, has been gene sequences. The techniques are mostly fairly standard:
symmetric laplacian, multiple eigenvectors, and k-means.

Other papers are mentioned elsewhere in the thesis and are not repeated here.

1.5 Vibrational Model

We first consider a problem with an infinite number of points. Suppose we have a
membrane which is continuous. It is stretched over some geometric shape {2 which is
connected but possibly not convex; such as a circle, square, L shape, etc. Vibrations
on the membrane are described by the wave equation —pii + Au = 0 in Q [15],[23]
with natural (free) boundary conditions. Here u is the displacement of the membrane,

and p = U% where v is the speed of propagation of the wave.
10

Suppose we only have transversal vibration without friction. We assume standing
wave solutions of the form u(z,y,t) = U(z,y)e'. The problem then becomes a
generalized eigenvalue problem of the form —AU = w?pU.

The smallest vibrational frequency is zero, which corresponds to the first vibration
mode, which is a constant function. The second vibration mode corresponds to the
Fiedler vector. This solution divides the membrane into two parts. Each part is
connected and moves synchronously. One part will have positive displacement while
the other has negative displacement. These are the nodal domains induced by the
eigenfunction (more on this is Section 1.14).

Now, suppose instead of a membrane we have a mass/spring system with a finite
number of points (nodes) in a plane. The masses are free to move perpendicular to
the plane. The equation describing this is Mz + Kz = 0 where M is a mass matrix,
K a stiffness matrix and z a vector whose z; entry describes the displacement of the
ith point mass.

Assuming a standing wave solution z = Ze™!, the equation becomes the gener-
alized eigenvalue problem —w?MZ + KZ = 0. Here the values of any eigenvector
Z represent the magnitude and sign of vibration of each node for the corresponding
fundamental frequency w. Again consider the Fiedler vector which defines the 2nd
vibrational mode. Nodes with the same sign are connected and move synchronously.
This consideration of vibrational nodes imposes a natural bicluster on the mass/spring
system.

Suppose we have masses of all unity so that M = I. Take the point masses to
be vertices in a graph and the spring constants w;; to be a weight assigned to the

edge connecting vertices i and j where i # j. The stiffness matrix K is now the graph

Laplacian. To see this note that an element of the vector K Z is the net force on node

11

i for displacement vector Z or

(KZ)i =Y wi(zi— 2) = D wylz — Y wyz
; j j
where

—wg;ifi #

K.. =

i

Thus we arrive at the problem expressed in terms of a graph Laplacian. Spectral
clustering produces a biclustering corresponding to the second mode of vibration.
This clustering satisfies our intuitive notion of a clustering as each cluster is connected,
vibrates in phase (similarity) and vibrates 7 degrees out of phase with the other cluster
(dissimilarity).

The statement that the clusters are connected is intuitively true for the membrane
with an infinity of points and can be proven (see Section 1.14) but is not as apparent
for the finite mass/spring system. We have also assumed that there are no boundary
(zi = 0) nodes. We will use some theorems by Fiedler to resolve these issues.

1.6 Fiedler Theorems

The 1975 paper by Miroslav Fiedler [26] proved two theorems on the Fiedler
vector which he referred to as the characteristic valuation of a graph.

While the work of Fiedler is mentioned by some papers [53],[57],[36] it is not
central to the combinatorial justification for spectral clustering. We will see however
that it clarifies certain aspects and is important for understanding practical numerical
results of spectral clustering.

We repeat Fiedlers theorems here with some modification of terminology.
Theorem 1.4 (Fiedler [26]) Let G = (V, E) be a finite connected, weighted graph.
Let L be the unnormalized Laplacian of G and w the Fiedler vector of L. Then
YV r >0 the subgraphs induced by A={i eV :u;>—r}and B={ieV :u <r}

are connected.

12

Tree with eval: 0 0.26795 0.65708 1

—0.325 —0.444

—0.444

Figure 1.3: Fiedler Vector for a Tree

Corollary 1.5 (Fiedler [26]) If r = 0 then both A and B are connected.

Theorem 1.6 (Fiedler [26]) Given any edge cut of a finite, connected, weighted graph
G that creates two connected components there exists a weighting (positive valuation)
of the edges of G such that the Fiedler vector defines the same two components. This
partition is derived via positive and negative values of the Fiedler vector and there are

no zero values in the Fiedler vector.

In Figure 1.3 (a tree), Figure 1.4 (a lattice), and Figure 1.5 (a wheel) we display
Fiedler vector values for three graphs with constant edge weights. The values for the
Fiedler vector are listed against the corresponding vertex. These examples demon-
strate how Theorem 1.4 would partition the graph. Lattices will be used for image
biclustering. The wheel in particular shows how using > 0 and < 0 as partitioning
criteria can lead to disconnected clusters.

The first thing to note is that there is no good reason to preferentially place nodes

with u; = 0 in cluster A or B. But there is a very good reason to place these boundary
13

4x7 5pt lattice with eval: 0 0.19806 0.58579 0.75302

-0.261 -0.209 -0.116 -0.000 0.116 0.209 0.261

@ o © @ @ o ©
-0.261 -0.209 [-0.116 0.000 0.116 0.209 0.261
® @ 0 @ @ - -©
-0.261 -0.209 |-0.116 0.000 0.116 0.209 0.261
¢ G o 3 © © O
-0.261 -0.209 -0.116 ~0.000 0.116 0.209 0.261
Iy Iy _)

o O o o O o

Figure 1.4: Fiedler Vector for a Lattice

5Spoke Wheel witheval:01 1 1

0.704
o

-0.494

.000 0.240
O

-0.450

0.000

Figure 1.5: Fiedler Vector for a Wheel

14

nodes in both clusters A and B. We see from Corollary 1.5 that both clusters A and
B will now be connected.

Theorem 1.6 demonstrates the importance of the weights we place on edges.
Choosing any bicluster giving connected clusters there is a weighting of the edges
which will produce it. So we must be very careful to choose weights which impart
some meaning to the similarity of vertices.

We will present a model for edge weights on images in Section 1.10.

1.7 An Extension of Fiedlers Theorem

The theorems of Fiedler as applied to graphs are stated for unnormalized graph
Laplacians. We propose and prove a more general version of them such that they will
apply to the normalized graph Laplacians and the more general eigenvalue problem
Lz = AMx where M is any positive diagonal matrix. This problem corresponds to a
mass/spring system where the mass matrix is not necessarily the identity matrix. In
particular, we want to show that an eigenvector corresponding to the second small-
est eigenvalue of this generalized eigenvalue problem can be used to partition the
associated graph for the problem into connected components.

To this end we state two lemmas and a theorem from Fiedlers 1975 paper [26]
that we will need in our proof. Recall that a matrix is irreducible if it is not reducible
and (see ”Special Matrices and Their Applications in Numerical Mathematics” [27]

page 79) a square matrix is reducible if it is in the form

BC
0D

or can be placed in this form via permutation PT AP.
Lemma 1.7 (Fiedler [26]) Let C be a diagonal matriz with c; > 0 and K a sym-

metric irreducible matriz, then CKC' is symmetric irreducible.

15

Lemma 1.8 (Fiedler [26]) Let K be a symmetric irreducible matriz and o > 0 such

that the diagonals of K + ol are not zero, then K + ol 1is symmetric irreducible.

These Lemmas follow from the observation that under the operations as defined
the positions of non-zero elements in K are unchanged and no new zero elements are

created.

Theorem 1.9 (Fiedler [26]) Let A be an nzn nonnegative irreducible symmetric
matriz with eigenvalues A\ > Ay > ... > N,. Let u = (u;) > 0 be an eigenvector
corresponding to Ay and v = (v;) an eigenvector corresponding to Aa. Then for any

a >0, the submatriz A(M,) is irreducible where M, = {i : v; + au; > 0}.

Note: u = (u;) > 0 exists by the Perron-Frobenius Theorem [37] [25]. That is.

since A is nonnegative and irreducible, there exists a positive eigenvector u for A;.

We now generalize Fiedlers Theorem as follows.

Theorem 1.10 Let G = (V, E) be a finite connected graph with vertices V numbered
1,...,n and edges E assigned a positive number k;;. Let K € R"™™ be the unnormalized
Laplacian of G. Let M € R™" be a diagonal matriz where m;; > 0. Let y be the
Fiedler vector of the generalized eigenvalue problem Kx = AMx. For r > 0, let
M, = {i:y; +r(M2)I; > 0} where 1 = (1,1,...,1)7. Then G, the subgraph induced

on G by M, is connected.

Proof: We note that this proof follows closely that of Fiedler for the unnormal-
ized Laplacian.

Since G is connected K is irreducible. Let B = —M "2 KM~2. B is nonnegative

SN / SR
VA VT

with sign of — 4+ —+. some o > 0 : B+« is nonnegative, symmetric, has positive di-

on the off diagonal elements, since B;; = — and is the product of terms

agonals and by Lemmas 1.7 and 1.8 is irreducible. Furthermore, (A, x) is an eigenpair

16

of Ko = A\Mx <— (5\ =-Ata,y= M%x) is an eigenpair of (B + al)y = Ay.

Now, 0 is an eigenvalue of Kz = AMax with eigenvector I (all ones). Since K is
positive semidefinite 0 is the smallest eigenvalue. Then u = M 21 is the eigenvector
of the largest eigenvalue of B + al. Let v be the eigenvector of the second largest
eigenvalue of B + al.

Let r > 0 and M, = {i : v; + ru; > 0}. By Theorem 1.9, the submatrix
(B + al)(M,) is irreducible = K (M,) is irreducible = the subgraph induced on
G by M, is connected.

]

In particular take r = 0. Then {i : y; > 0} defines a connected subgraph of G
and since —y is also a Fiedler vector for Kx = AMz, we see that {i : y; < 0} also
defines a connected subgraph of G.

The generalized eigenvalue problem Kx = AMx is equivalent to — By = Ay where
y=M 2x. Note that y preserves the sign of eigenvector x and so x and y produce
the same clustering for » = 0.

The generalized eigenvalue problem is also equivalent to M 'Kz = Az with the
same Fiedler vector as in the original problem.

For the case M = D (the diagonal of K) we get the normalized equivalents of
the graph Laplacian, D"2 KD~2 = Ly, and D' K = L,.,,.

So, without recourse to combinatorial models we have shown that the normalized
graph Laplacians and the more general forms of these equations using a mass matrix

produce connected subgraphs via spectral clustering.

17

1.8 Effect of mass matrix on segmentation

Having extended one of Fiedlers Theorems (see Section 1.7) with respect to the
mass matrix Laplacian problem Lz = AMzx, we wished to examine the effect of the
mass matrix on clustering.

Numerical experiments were performed. We present the following observations
which apply to biclusters produced via the Fiedler vector.

1. Clusters defined by division of the Fiedler vector via > 0 and < 0 will be

connected. This is insured by our extension of Fiedlers Theorem.

2. The two vertices of highest mass tend to be in separate clusters; see Figure 1.6

for two examples of this.

3. For the vertex of highest mass, if the mass is large enough, it will be in a cluster

by itself provided observation 1 is not violated; see Figure 1.7 and Figure 1.8.
4. The vertex of smallest mass is never isolated in a cluster by itself; see Figure 1.9.

Observation 3 can be understood (but not proven) by the following. Reformulate

the problem Lz = AMx as M_%LM_%y = By = \y. Let m; be the mass of vertex

; i o= 1 .

t. The matrix B has elements B;; = \/WA” Nt If we take B row by row we see
. . . . 1

that we are adjusting the weight of the edges of row (vertex) i by NG Suppose

m; is the largest weight and m; >> m; for every ¢ # j. If the original edge weights
are large relative to J%’ then we now have the smallest weights around vertex ¢ and
would expect it to be in a cluster by itself.

Observation 4 follows for similar reasons with my << m; and the largest weights
are around vertex k. So it will be strongly associated with the surrounding vertices.

Numerical experiments for these results are reproduced in the following figures.

At each vertex its mass and Fiedler vector value is listed. The Laplacian was setup
18

with constant edge weights and the Matlab eig function was used to solve for the

Fiedler vector.

0.371 0.213 -0.495
pn=1.00 bri=7.00 m=7.00

0619 057 0368 0013 0382
0.402 [.254 0.018 - * * * *
L1 00 100 L —1.00 m=010 m=100 m=100 m=200 m=3.00
0.444 [.334 1,190
rr=1.00 rr=1.00 m=1.00

Figure 1.6: Observation 2: Separation of Two Highest Masses

-0.054 0.082 0517
m=1.00 m=70.00 m=7.00
0.234 0.246 0426
rn=1.00 n=1.00 m=1.00
0.327 0.358 0.433
m=1.00 m=1.00 m=1.00

Figure 1.7: Observation 3: Largest Mass in a Cluster by Itself

0.223 0.143 -0.010 0.493 0.5826

* * & * *

m=1.00 m=1.00 m=100.00 m=1.00 m=1.10

Figure 1.8: Observation 3: When Largest Mass can’t be in a Cluster By Itself

19

-0.577 -0.289 -0.000

* ®
m=1.00 m=1.00 rn=0.01
+0.289 0.000 [.259
m=1.00 m=1.00 m=1.00
0.000 1.289 577
m=1.00 m=1.00 m=1.00

Figure 1.9: Observation 4: Smallest Mass never in a cluster by itself

1.9 Image Segmentation

Our problem is to bipartition an image according to the ideas discussed in Sec-
tion 1.5. A real world object is like the membrane, a continuous, infinite (for all prac-
tical purposes) number of points. When we take a picture we reduce the real world
image to a finite number of pixels. In a simple case, each pixel has red,green,blue
(RGB) values from 0 to 255. We consider the discrete image as a graph with vertices
corresponding to the pixels which are labeled as consecutive positive integers from
the lower left edge of the image to the upper left edge column by column as shown
in Figure 1.10 for an image with m rows and [columns.

Edges are defined based on a 5 point stencil. The result is a m x [lattice. If we
had a 3 dimensional image we would define similarly a pixel numbering with edges
defined on a 7 point stencil.

Note that the graph Laplacian of a lattice has a structure imposed by the 5 point
stencil and the numbering choice for the vertices. The only non zero elements of the
Laplacian lie on the diagonal, adjacent to the diagonal, and +m columns from the

diagonal.
20

mo 2m o...oml

2o0m-+2o0...:

lom+1lo...o(l—=1m+1

Figure 1.10: Labeling of Pixels in an Image

The final component we need to construct the Laplacian are the edge weights.
1.10 Edge Weights

There are many ways to assign weights. The method we choose is implemented in
Leo Grady’s software [31]. It is based on a combination of RGB values and geometric
distance.

Say pixel 1 and pixel 2 are connected by an edge and they have RGB values
{R1,G1,B1} and {R2,G2,B2}. Let 0R = R1 — R2, 0G = G1 — G2, and 6B =
B1 — B2.

Let valDist = v/0R? 4+ 6G2 + §B2. Then normalize the values with respect to
the range [0, 1]. Set geomDist = 1, which is the same for all edges.
The distances are a measure of dissimilarity between pixels. For the Laplacian we

s
dist®xa where a

need measures of similarity. This is achieved by using the function e~
is a constant and k a positive integer. These control the rate that similarity declines
with distance. For our model we choose k& = 1.

Definition 1.11 edgeW eight = e~ %' +-epsilon where dist = geomScalexgeom Dist-+

valScale * val Dist

We have introduced 3 parameters: geomScale and valScale adjust the relative
importance of geometric vs RGB values. Geometric distances are always unity, since
the pixels are nodes of a uniformly spaced lattice, but value distance (valDist) can

vary from 0 to 1 and values are typically less than 0.05. geomScale is typically chosen
21

to be 1 and valScale 25 or larger. epsilon is the minimum allowable weight. A
typical value for epsilon is 107°. We will discuss the impact of these parameters in

Section 1.12.

1.11 Spectral Clustering Algorithm
The remarks of the previous Sections are embodied in the following algorithm.

1. Formulate the problem as a graph G = (V, E) with n vertices.
2. Number the vertices of G from 1 to n.

3. To each edge we assign weights and construct a weighted adjacency matrix A

for G and the associated degree matrix D.
4. Construct Laplacian matrix L = D — A.
5. Compute the Fiedler vector Y = {y1,ya,...,ys} of the Laplacian L.
6. BiCluster the graph into subgraphs A and B using Y as follows:
A={ieV:y; >0}, B={ieV:y <0}
Notes:

e The graph G must be connected.

There are many ways to assign weights. Section 1.10 only describes one method.

AlJ B =V but it’s possible that A[B # () since there may be y; = 0.

With respect to the Vibrational justification for spectral clustering, A and B

are the optimal solutions. Their RatioCut values are irrelevant.

Since both A and B are connected, we can use successive applications of the

algorithm to generate smaller clusters.

22

1.12 Tuning the Edge Weight Parameters

Some numerical experiments using Matlab with the image in Figure 1.11 were per-
formed to illustrate the effect of the parameters on weight assignment as described in
Section 1.10. The image is of a cats ear with dark fur against a light gray background
with some white whiskers and fur. This has an obvious clustering consisting of the
ear and the background.

The primary image is 200x320 pixels with RGB values from 0-255. A graph

Laplacian is constructed as defined in the previous Sections.

Figure 1.11: Base Image for Analysis

For the initial analysis the image is scaled by sampling of pixels into images with
smaller resolution. Weights are assigned with valScale = 25, geomScale = 1, and
epsilon = 107°. The Matlab eigs sparse eigensolver was used.

The results are shown in Figure 1.12, where a light line has been added to the

image to show the boundary separating the clusters generated. The graph in the
23

lower right hand corner shows solution time in seconds (y-axis) versus image size in
pixels (x-axis).

200x320 100x160 67x107

4
£
<

50x80 40x64 34x54

P
4
’

29x46 25x40 eigs,val=25,geom=1
10

4
w

Figure 1.12: [Initial Analysis

The results are good with the exception of the 200x320 image where the boundary
deviates upwards to the top edge of the image. This can happen when the valDist
is too small with respect to the geomDist.

Consider the lattice in Figure 1.4. In this graph the edge weights are all one and
the lattice could be considered as an image where RGB values for all pixels are the
same. Note how the boundary {7 : y; = 0} bisects the image from top to bottom (the
smaller dimension) at the midpoint of the larger dimension. This illustrates how the
geometry of the image can affect the Fiedler vector, and we might suspect that the
distance term is overpowering the value term.

Adjusting the valScale to 50 and repeating the experiment solves the problem,
see Figure 1.13.

Why don’t we see this problem at the reduced image scales? As the scale is re-

duced by sampling the computed mean val Dist is increased from .018 for the 200x320
24

200x320 100x160 67x107

50x80 40x64 34x54

- .

29x46 25x40 eigs,val=50,geom=1
10

a A

p:

Figure 1.13: Effect of increasing ValScale

image to .05 for the 25x40 image. As a result the valScale x val Dist term increases
with respect to the geomScale x geomDist term which is unchanged. This has the
same effect as adjusting valScale.

Similarly varying geomScale with respect to valScale can cause degradation of
the bicluster as shown in Figure 1.14 for the 40x64 image.

So what does epsilon,in edgeWeight = e~%5 + epsilon, do? Very small edge
weights can occur when we have a small number of connected pixels with RGB values
very different from those surrounding them. These “islands” or “specks” within the
image can dramatically affect the clustering. To see this consider the lattice in figure
1.4 but with the edges of a single vertex made smaller than one (vertex number 6
using the numbering previously defined). The result is shown in Figure 1.15. Vertex
6 is now in a cluster by itself.

We can see this in our ear image if we set epsilon = 1078, The result shown in
Figure 1.16 shows the effect of one such “speck” in the 100x160, 50x80, and 40x64

scaled images. In the 40x64 image we have magnified the image to show more clearly

25

geomScale=1 geomScale=2 geomScale=3

B & &

geomScale=4 geomScale=5 geomScale=6

A G A

geomScale=7 geomScale=8 geomScale=9

|40x64 eigs valScale=50

Figure 1.14: FEffect of geomScale

4x7 5pt lattice with eval: 0 0.04086 0.18894 0.46508

0025 0028 0033 0039 0044 0.048 0.050
@ o o o © © 9]
0.021 0.024 0.031 0.038 (0044 0.048 0.050
@ © @ © @ @]
0.014 -0.980 0.029 .037 0.043 0.047 0.049
¢ @ 37 o o)]
0.016 0.017 [0.028 [0.037 0.043 0.047 0.049
& & £ & S ©)

Figure 1.15: Effect of Islands

how a single pixel has been isolated. Epsilon smooths out large dissimilarities in RGB

values.

26

200x320 100x160 67x107

A A &

50x80 40x64 34x54

. A

29x46 25x40 eigs,val=25,geom=1

|

Figure 1.16: Effect of Epsilon

1.13 Eigenvalue Solvers

When using the Matlab eigs function we add a shift to the Laplacian, so that it
is now positive definite. If the shift is too large, there is not good relative separation
with respect to the smaller eigenvalues and eizgs may not return a good Fiedler vector.
Also, if we are solving to a tolerance that is too large the Fiedler vector may be of
low quality.

In these cases disconnected clusters can be produced, see Figure 1.17 where a
shift of 1075 was used. Note that for the 50x80, 40x64, and 29x46 scaled images the
cluster boundary gives disconnected clusters. We know from Corollary 1.5 that this
is not possible, so something must be wrong with the solution for the Fiedler vector.

The eigs function was usable in our experiments since the size of the image
was small. Larger images will produce Laplacians with dimensions in excess of 107.

This size problem requires the use of large sparse eigensolvers such as BLOPEX
27

200x320 100x160 67x107

& & &

50x80 40x64 34x54
29x46 25x40 eigs,val=25,geom=1

h A

Figure 1.17: Poor Quality Fiedler Vector produced by too small a shift

[44],[41]. These implement iterative solvers such as LOBPCG [43] and make use of
preconditioners [42]. But, whatever method is used, if either {i € V : f; > 0} or
{i € V1 f; <0} is not connected then the Fiedler vector produced is suspect.

Image segmentation can practically exploit these eigensolvers. The Laplacian is
symmetric positive semi-definite with smallest eigenvalue of zero. It can be shifted
to produce a positive definite matrix without changing the eigenvectors. We know
what the eigenvector is for eigenvalue zero, and this can be used as an orthogonal
constraint for solution of the next eigenpair. These eigensolvers are designed to solve
for only a few of the smallest eigenvalues, and we only need the second eigenvalue
and associated eigenvector, so spectral clustering can be done efficiently.

1.14 Nodal Domain Theorems

Fiedlers theorem deals with the bi-clustering of a graph based on the 2nd eigen-
vector of a graph Laplacian (Fiedler Vector). We have provided an extension of
this to a generalized eigenvalue problem. A Theorem similar to Fiedlers exists for

higher eigenvectors. We summarize the following work done on nodal domains and
28

it’s discrete counterparts.

In Courant and Hilberts book ”Methods of Mathematical Physics, Volume 17,Ch.
6, Sec. 6 [13] they present the following theorem. This dates from 1924, and is
frequently referred to in papers on nodal domains. It is often referred to as CNLT
(Courants Nodal Line theorem).
Theorem 1.12 (CNLT [13] pg 452) Given the self-adjoint second order differential
equation

Liu] +Apu=0 (p>0)

for a domain G with arbitrary homogeneous boundary conditions; if its eigenfunctions
are ordered according to increasing eigenvalues, then the nodes of the n-th eigenfunc-

tion u,, divide the domain into no more than n subdomains.

By nodes is meant the set {x € G : u,(x) = 0}. Depending on the dimension of
G this might be a nodal point, curve, surface, etc.

These nodes (also referred to as nodal lines) divide the domain G into connected
sub-domains called nodal domains.

If G has dimension m then the nodes will be hyper surfaces of dimension m — 1.
It can be shown that the nodes are either closed or begin and end on the boundary
[30], and are of Lebesque measure zero [9].

The proof of CNLT provided by Courant and Hilbert is rather cryptic; being more
of a discussion than a formal proof and is for the case of G C R?. A more accessible
proof for the more general case of G C R™ is provided in a paper by Gladwell and
Zhu [30].

While not giving the details of the proof we will examine it’s basic features and see
how it acts as a template for a discrete CNLT. Ultimately, we will derive a new version
of the discrete CNLT, that includes Fiedlers theorem as a special case. Fiedlers proof
depends on theorems of of positive, irreducible matrices. It is instructive to see how

an entirely different approach than that used by Fiedler yields the same result.
29

The CNLT proof depends on:

1. the nature of the eigenfunctions and eigenvalues of the problem, i.e. the eigen-

values can be ordered and the eigenfunctions form a complete orthonormal set,
2. the variational form of the problem,

3. the application of the min-max characterization of eigenvalues (Courant-Fischer

Theorem), and

4. the unique continuation theorem.

Gladwell and Zhu prove the problem for the Helmholtz equation Au + Apu = 0
on a domain D.

This has infinitely many positive eigenvalues 0 < A; < Ay < ... whose correspond-
ing eigenfunctions form a complete orthonormal set, see Griffel [33] Thm 9.16. A; =0
for the free membrane problem and A\; > 0 for the fixed membrane problem.

Those of us primarily versed in matrix analysis are familiar with the Courant-
Fischer theorem from Horn and Johnson [37] Thm 4.2.11. The equivalent on a domain
D that is a subset of a Hilbert space is given in Griffel [33] Thm 10.18.(b) and is

repeated here.

Theorem 1.13 (Griffel [33] Mazimum Principle pg 287) If A is a positive symmetric
differential operator, on a Hilbert space H, with domain D, a compact inverse, and

with eigenvalues \i, o, ..., then

A1 = max {min{R(u) : uLlspan{k,...,k,}}}

1,k €D

where R(u) = <2%> s the Rayleigh Quotient.

<u,u>

Gladwell’s proof will examine solutions of the variational form of the problem on

the space H}(D). HJ(D) is the space of Ly(D) functions, whose derivatives are in

30

Ly(D) and vanish on the boundary of D [39] [33]. The domain D is assumed to be

bounded and connected. In this case, we have, A = —ﬁA and R(u) = foAZﬁu.
D

The unique continuation theorem [38] states that if any solution u € Hg(D) of
the Helmholtz equation vanishes on a non-empty open subset of D then v =0 in D.

The complete proof of the CNLT is in three parts. First a theorem by Courant
and Hilbert that there are at most n 4 r — 1 sign domains for the eigenfunction u,, of
An. Then a theorem by Hermann and Pleijel that shows for a connected domain this
number (n + r — 1) can be improved to n, and finally the extension of this limit to
unconnnected domains.

The continuous CNLT serves as motivation for a discrete version. The proof for
this discrete version was not completed until 2001 in a paper by Davies, Gladwell,
Leydold, and Stadler [14]. The discrete CNLT deals with solutions of Au, = A\,u,
and requires the following terminology and definitions.

Let A € M, be a real symmetric matrix with non-positive off diagonal elements.
A graph Laplacian L would be an example. Other examples would be problems of the
form L + aD where D is a diagonal matrix and L = —1 times the adjacency matrix
of a graph.

Solutions of Au,, = \,u,, are of the form A; < Ay < ... <)\,,. Whatever the exact
form of A we can associate it with the off diagonal elements of a graph G = (V, N) with
vertices V' corresponding to the columns and edges E (possibly weighted) associated
with the non-zero elements a;;.

The nodal set of an eigenvector u,, does not lend itself to an exact correspondence
with the nodal set and nodal domains in the continuous case. Instead, strong and

weak sign graphs are defined as follows.

Definition 1.14 (Davies [14]) A strong positive (negative) sign graph is a mazimal,

connected subgraph of G, with vertices i € V' and u(i) > 0 (u(i) < 0).

31

Definition 1.15 (Davies [14]) A weak positive(negative) sign graph is a mazimal,

connected subgraph of G, with vertices i € V' and u(i) > 0 (u(i) < 0).

We speak of a vertex as having a sign of positive, negative, or zero. We note
two key components of these definitions. The subgraphs are connected and they are
maximal in the sense that no vertices of the same sign as the subgraph can be added
to the subgraph and have it still be connected.

A few examples in Figure 1.18, that we derived, will illustrate these concepts.
The eigenvectors of the graphs were computed using the unnormalized Laplacian

with constant edge weights. Only the signs of vertices are shown.

O—-O—-0—0C
o'.o O—@ G
OO~

4th eigenvector 3rd eigenvector
4 strong sign graphs 3 strong sign graphs
2 weak sign graphs 3 weak sign graphs

Figure 1.18: Examples of Strong and Weak Sign Graphs

Given these definitions and terminology the discrete CNLT is formulated as fol-

lows.

Theorem 1.16 If G = (V, E) is a connected graph and A a symmetric matriz with
non-positive off diagonal elements, the n-th eigenfunction u, of A divides the graph

into no more than n weak sign graphs.

32

The proof of the discrete CNLT proceeds as for the continuous CNLT and depends

on the ordering of the eigenvalues, the orthonormality of the eigenfunctions, and the

min-max characterization of the eigenvalues. Instead of using the variational form

used in the continuous CNLT an identity from Duval and Reiner [22] is used. Also,

we do not have the unique continuation theorem in the discrete case but there is an

analog (see Davies et al. Lemma 3 [14]).

It should be noted that much of this proof was done in the previous paper by

Duval and Reiner. However, they made the claim that the CNLT was valid for strong

sign graphs. Friedman [29] had previously given examples showing this is not true.

Figure 1.19 shows two examples of this. The more complicated one on the left being

one we derived.

®

5

0
®

L,

=)
Sth eigenvector

8 strong sign graphs
2 weak sign graphs

2nd eigenvector
3 strong sign graphs
2 weak sign graphs

Figure 1.19: Strong Sign Graphs exceeding eigenvector number

Also, note that the graph G must be connected and the theorem applies to weak

rather than strong sign graphs.

33

A few conclusions can be draw from the definitions and an examination

of examples.

e The number of weak sign graphs is always < the number of strong sign graphs.

The number of both weak and strong sign graphs can be < n.

If there are no zero vertices the number of strong and weak sign graphs are the

salne.

If there are zero vertices the number of strong and weak sign graphs can still

be the same, see Figure 1.20.

The number of weak or strong sign graph can decrease with increasing n.

The last item seems a bit counter intuitive, but is demonstrated by an example

we derived in Figure 1.20.

\ /

(+ O—
H—0 O—©

3rd eigenvector 4th eigenvector
3 strong sign graphs 2 strong sign graphs
3 weak sign graphs 2 weak sign graphs

Figure 1.20: Sign Graphs decreasing in number

Finally, in the concluding remarks of Davies paper he states that the theorem
can be extended to the generalized eigenvalue problem (K — AM)u = 0 where K is

positive semi-definite and M is positive definite.
34

Fiedlers theorem is in part a special case of the discrete CNLT for n = 2 where the
cut is with respect to » = 0. However, note that Fiedlers theorem covers subgraphs
induced by {i € V : u(i) > —r} and {i € V : u(i) < r} where r > 0, which the CNLT
does not address.

We will modify the definition of weak sign graphs and produce a new

version of CNLT that completely covers Fiedlers theorem as a special case.

Definition 1.17 An r-weak positive (negative) sign graph is a mazimal, connected
subgraph of G, with v > 0 and vertices i € V and u; > —r (u; < r). (For an example

see Figure 1.21.)

6 strong sign graphs

5 weak sign graphs

4 r-weak sign graphs where r=.04
r-weak sign graphs are circled

Figure 1.21: An example of R-weak Sign Graphs

Theorem 1.18 (Modified Discrete CNLT) If G is a connected graph, A a symmetric
matriz with non-positive off diagonal elements, and r > 0 the n-th eigenfunction u,

of A divides the graph into no more than n r-weak sign graphs.

Proof: Let r > 0 and R be an r-weak sign graph (rwsg). Then either there
exists a weak sign graph (wsg) W such that W C R (we will call this type 1) or if
no such wsg exists then there exists a wsg U such that R C U (we will call this type

2). To see this, suppose R is a maximal set generated from f; < r. Then if R has
35

entries < 0 it is type 1. If it doesn’t then it has entries > 0 and < r in which case R
is a wsg U with R C U and it is type 2. We can make similar arguments when R is
generated from f; > —r.

Let |wsg| be the number of wsg and |[rwsg| be the number of rwsg. Suppose Ry
and R, are type 1 rwsg and W is a wsg such that W C R; and W C R,. Since R;
and R, are maximal we must have Ry = Ry. So |wsg| > |type 1 rwsg|.

Let Ry and Ry be rwsg of type 2 with Ry C W, and Ry C W5 where Wy and W,
are wsg. By maximality if Ry # Ry then Wy # Ws. So |wsg| > |type 2 rwsg|.

Suppose there is also a rwsg R3 of type 1 such that Ry € W1 C Rz then by
maximality Ry = R3 a contradiction. So the set of wsg associated with type 2 is
disjoint from the wsg associated with type 1. From this we conclude that |wsg| >
|rwsg| and by the discrete CNLT the n-th eigenfunction divides the graph into no
more than n r-weak sign graphs. []

We make an observation that the definition of strong sign graph excludes zero
vertices from the partition of the graph and they are mutually exclusive. Weak
sign graphs include the zero vertices, if any, and if they do they will not be mutually
exclusive. This means that the set of all strong or weak sign graphs may not constitute
a partition of V' in the sense as usually stated in the combinatorial graph partitioning
problem [6]. This being the case, partitioning objective functions (ratio cut, Ncut)
lose their meaning without some redefinition.

From a spectral clustering perspective this is not a restriction and we can ask the
question, ”Should we be partitioning based on strong or weak sign graphs?”. Both
have an association with modes of vibration. And if we use strong sign graphs we
may be excluding vertices, which does not seem desirable. But, in either case our
clusters will be connected which we intuitively think of as desirable.

The use of r-weak sign graphs has a further advantage. We have said previously

there is no good reason to include/exclude zeros from multiple clusters. But when

36

dealing with a numerical solution to our eigenvalue problem we will in general not
know any vertex eigenvector value to exact precision. If the error is < r where r is
small we would more properly define clusters based on r-weak sign graphs. In this case

the overlap between clusters may be enlarged but our clusters will still be connected.

1.15 Summary

We have reviewed the concept of spectral clustering and proposed an alternative
explanation (the Vibrational model) of why it is an effective technique for clustering,.
We have provided an extension to one of Fiedlers theorems using similar techniques as
those used by Fiedler which complements the Vibrational model. We have examined
discrete nodal domain theory and by expanding the definition of weak sign graphs
produced a modified CNLT that includes as a special case the CNLT and Fiedler
theorem. It’s use for image segmentation was explained. The importance of edge
weights and a particular method for their determination was examined. Finally,

some numerical results were given.

37

2. MicroArrays
2.1 Introduction

In the previous chapter we introduced the ideas involved in spectral segmentation
and applied these to image segmentation. In this chapter we will extend these to the
problem of microarray analysis. We will advocate a normalization rule for the analysis
of microarray data where the objective is recognition of genes with similar expression
levels in time dependent experiments.

Microarray analysis involves some practical problems that were not relevant in
image segmentation. The primary one being that if we are going to have sparse
Laplacians then we will almost certainly end up with disconnected graphs. We will
propose a new technique for dealing with this.

We also alluded to using successive bisection in the previous chapter. We will
develop and implement a technique for doing this and as a part of this propose a rule
for partition selection.

2.2 What is a Microarray?

A microarray is a chip containing oligonucleotide sequences used to detect the
expression level of genes. We will give a brief review of the biology inherent in this
statement.

Genes are DNA sequences of nucleotides A,C,T, and G which code for proteins.
The process of protein formation in a cell involves: transcription of DNA to mRNA
(messenger RNA) in the cell nucleus and then translation of mRNA to a protein via
a ribosome, see Figure 2.1. When proteins are being formed for a gene this is called
gene expression.

Gene expression is not a constant process. It can depend on the various states
a cell is in, such as metabolic cycles, disease response, and stages of embryonic de-
velopment. The level of gene expression will vary. This can either be an increase

or decrease from "normal” levels, referred to as up regulation and down regulation.

38

DNA =sense strand e v DR TR

antisense strand e e TOLl BET
l transcription
mBEMN A ... LOLA CEO

l translation
Probein v e b LIES Do

Figure 2.1: Gene Expression

Knowing which genes are expressed and by how much can aid in the understanding
of cellular processes and in diagnosis of disease.

However, measurement of the concentration of proteins in a cell is difficult. One
solution is to measure mRNA as a proxy. This depends on the assumption that most
mRNA created is actually translated to a protein.

Various DNA microchip technologies have been designed to perform this function.
They have the advantage of being able to measure the expression levels of thousands
of genes at the same time. For purposes of discussion we will use the Affymetrix
GeneChips.

A GeneChip microarray is a quartz wafer less than 1/2 inch square, on which
millions of oligonucleotide sequences have been assembled using a photolithographic
process.

GeneChips are specific to the genome of a particular organism (Ecoli, Aribidopsis,
Homo Sapiens, etc. The oligonucleotide sequences consist of nucleotide chains of
length 25 (25-mers). These chains are chosen to correspond to selected parts of genes,
and these genes (ideally) cover the entire genome of the organism. These 25-mers are
complementary to the sense strand of DNA and correspond to mRNA sequences.

Some 11-20 of these 25-mers target a specific gene and are referred to as perfect

matches (PM). In addition, a 25-mer corresponding to each of the PMs is constructed

39

with a mismatch (MM) in the 13th base pair.

The 25-mers are built on the GeneChip in a pattern of dots as small as 11 microns
in size. Each dot is referred to as a probe and the set of probes for a single gene are
called probe sets. Also, each chip contains calibration probes. Each probe contains
hundreds of the 25-mers with the same nucleotide sequence. The information about
where these probes are on the chip is contained in an Affymetrix file with an extension
of .chp. Meta information about the probe set such as gene name is contained in a
(.gin) file.

Now, omitting most of the biochemical details (just know it’s not as simple as
it sounds), a sample of mRNA is extracted from the cells of an organism and is
converted to a biotin labeled strand of complementary RNA (cRNA). The cRNA is
complementary to the 25-mers on the GeneChip. When the GeneChip is exposed to
this sample a process called hybridization occurs. During hybridization, complemen-
tary nucleotides line up and bond together via weak hydrogen bonds. The greater the
concentration of a particular mRNA strand, the greater the number of bonds formed
within one or more of the probes in the corresponding probe set, see Figure 2.2 for a
depiction of a GeneChip.

Now, the number of those hybridized probes have to be counted. A fluorescent
stain is applied to the GeneChip that bonds to the biotin and the GeneChip is pro-
cessed through a machine that paints each pixel of the chip with a laser (a pixel is
the minimum resolution of the laser and is a small part of a probe) causing that pixel
to fluoress, the magnitude of which is measured. The results are stored in a (.dat)
file containing the raw information about the GeneChip experiment.

The pixel locations and intensities are mapped and normalized into probe loca-

tions and these results are stored in a (.cel) file.

40

Affymetrix GeneChip DNA Microarrays

Click to add title

Affymetrix GeneChip DNA Microarrays

Single stranded, Mudrescanty
laboled DMA target

Olgornuchectide probe

Each probe leature conlaing
mellkons of copias of a specilic
abgonuceobos probe

Orhid 200,000 difiarant probeds
complimantany 1o penotic
information of inferest

Image of Hybridized Probe Array

Image Courtesy: Afymatrix

Figure 2.2: An Affymetrix GeneChip

All of this can be referred to as pre-analysis. We will pick up the discussion of
analysis in the next section. For now, lets discuss microarray experiments in more
detail.

A measurement by a single microarray is just a sample size of one. It’s multiple
sample sizes that are going to tell us biologically meaningful information. In general
microarray experiments are of two kinds. (1) Studying a process over time. For
example: We want to measure the gene response to a drug or a metabolic process.
(2) Looking for differences between states. For example: Normal cells versus Cancer

cells, which would have utility in disease identification.

41

In this paper our analysis will be concerned with an experiment of the first type.
This involves multiple chips measuring responses in one or more organisms. Taken

over time or during identifiable metabolic stages.

2.3 How is Microarray data analyzed?

After the pre-analysis is done we have a lot of raw data and still a long way to
go. The first part is referred to as low level analysis and involves a three step process,
see Bolstad [5] for a more detailed discussion.

1. The adjustment of probe level information in each array for background noise.

This is due to variations in the cRNA preparation process.

2. The normalization of data across multiple arrays. Arrays cannot be created
perfectly identical. Data distributions and calibration probes are involved in

this.

3. Summarization of probe information into an intensity (expression level) for each

probeset.

This gives an expression level for each gene in each array. The results of this
analysis are stored in a (.chp) file.

At this point we have the following files.
e .cdf probe to probe set (gene) mapping
e _¢in information about the probe set

e .dat pixel level data

e _cel probe level data

e .chp gene level data

42

The next level of analysis (referred to as High level) involves looking for rela-
tionships between genes via various forms of cluster analysis (hierarchical, K-means,

principle component, spectral, etc.).

2.4 Normalization of data

Various statistical normalizations have been applied to the raw data to produce
gene expression levels. Before performing spectral clustering we propose normal-
izing the expression vectors to one. Here’s why.

Suppose, our microarray experiment examines a metabolic process at 5 distinct
points. The processing of the raw data has produced an array of data where the
rows are the genes and the columns (5 in number) are the expression levels. We
are interested in clustering genes according to how similarly they are upgraded or
downgraded. Now suppose we have two genes with expression levels (vectors) of
(1,3,4,2,1) and (2,6, 8,4, 2), see Figure 2.3. The expression levels of these two genes
show a strong correlation with respect to how they change through the metabolic
process; the second just has a magnitue twice the first. We would like to see these
genes clustered together.

But, looking at these within our 5D expression space, they may be far enough
apart that when we generate edge weights they are not connected. Geometrically, we
are saying that vectors close to the same straight line segment starting at the origin
are correlated and should be clustered together. To accomplish this we normalize
the data to vectors of length 1. This is equivalent to projecting the vectors onto a
unit sphere around the origin. An example of this in the 2D case is illustrated in
Figure 2.4. Without normalization (circles in green) there are three obvious groups.

With this normalization (circles in red) there are two.

2.5 Disconnected Graphs

When defining edges between graph nodes (i.e. expression level vectors) we are

typically dealing with thousands of nodes. To control the sparcity of the resulting
43

Figure 2.3: Genes with correlated expression levels

Figure 2.4: Effect of normalization on clusters

Laplacian we usually have to limit the number of edges in some way. For images we

controlled the number of edges by defining our graph as a lattice with edges defined
44

by a 5 point stencil.

The data for microarrays does not fit into any preconceived graph architecture.
The edge weight between two nodes is computed via a function such as an inverse
gaussian distance which we will describe in more detail later. Then we apply a cutoff
weight value. If the computed edge weight is less than this value the edge weight is
set at zero. This effectively says there is no edge between those two nodes.

Selection of the limiting value can produce a graph that is almost complete or
one that is so sparse few of the nodes are connected. Ideally we want a graph whose
Laplacian is sparse (so it’s easier to solve), has enough edges to retain the inherent
structure of the data, and is connected (so we can apply the nodal theory previously
developed). The first two conditions can be met by examination of the sparsity of the
resulting adjacency matrix and adjustment of the cutoff weight. The last condition
(connectivity) is not as easy.

As the edges are reduced we inevitably create multiple components in the resulting
graph. The discrete nodal domain theorem required our graph to be connected.
These disconnected components need to be identified. For components of size one
(no edges connect to it) this is simple and efficiently accomplished by examination of
the adjacency matrix; i.e. all values in a row are zero. For components of a larger
size this is not as easy.

Graph algorithms such as a Breath First Search can be utilized to do this (see [12]
page 534) but have the disadvantage of having run time of ©(V + F). Generally there
are a lot more edges than vectors and this can be quite large (potentially ©(V?)).

An alternate method to find components using spectral methods was proposed by
Ding, He, and Zha [19]. Their method is based on examination of the eigenvectors of
the Laplacian with eigenvalue zero. We know the multiplicity of eigenvalue zero will
be the number of components of the graph. Careful examination these eigenvectors

can identify the individual components.

45

We propose an alternate method which is also spectral in nature and will
easily integrate into the successive biclustering algorithm we will introduce later. This
method starts with the addition of a connecting node to the graph and the definition
of an edge of a small weight between the connecting node and every other node. Our
graph is now connected, and this small perturbation to an unnormalized Laplacian
is subject to an exact solution in terms of the original Laplacian for the problem
of Lv = Av. We next give the solution to this problem in the following
theorem, and then apply it to an algorithm for extraction of components.
Theorem 2.1 Let L be the unnormalized Laplacian of a graph G with n vertices, not
necessarily connected. Let G be a graph formed by the addition of a vertex to G and
an edge between this vertex and every other vertex. Let all of these edges have weight
b> 0. Let L be the Laplacian ofé and let I, be the vector of all ones of size n. Then

the eigenpairs of Lw = Mw can be characterized as follows:
1. (0,1,41),
2. (b, [§]) where Lv =0v and v # 0 and > v; =0,
3. ((n+1b, [1)),
4. (A+b, [8}) where Lv = Av and A > 0.

Proof:
By construction of G it is connected and so (1) follows.

We have L = [L;TD b f;} where B = —0I,, and D, is the diagonal matrix with b on

all diagonals. Let v be a solution of Lv = 0v where v # 0 and the sum of the entries

of v is zero. Then [:[8] = [L”+Db”] = [bé)] = b[g} which proves (2). Note that this

BTy

case can only occur when G is connected.

We also have IA/[E’;L] = [LH”JFD*’H"JFB(_")} = | bl bl | =m+ 1))

BTL,+nb(—n) nbtnb(—n) | which

proves (3).

46

Suppose Lv = Av and A > 0, then by the orthogonality of v to I, we have
L[¥] = [Pl] = [Mogt] = (A +b)[§] which proves (4).

Now, we have only to show that all possible eigenvalues have been accounted for
and their eigenvectors are linearly independent.

If G is connected then by (1),(3) and (4) we have defined n + 1 eigenpairs. The
eigenvectors v in (4) are independent and orthogonal to I,. So, (1) and (4) define n
linearly independent eigenvectors. For the same reason, [E’;Z]T [8] = 0 and we have
n + 1 independent eigenvectors. Since, G is connected (2) does not apply.

If G is not connected then the multiplicity of the eigenvalue zero is the number of
components of G. Let m be the number of components of G. For any two components,
say G; and G}, of G, we can define a vector v such that Lv = 0 and) v; = 0. Just
take v; = 1 if i € G; and v; = a if i € G, where a = |G}|/|G|. We can construct
exactly m — 1 such vectors which are linearly independent. So, by (1),(2), and (4) we

have 1, m — 1, and n — m independent vectors for a total of n and then (3) adds the

last.

Corollary 2.2 If Lv = bv then > v; = 0 and all values in v for any component of

G will be the same.

Proof: We note that our choice of eigenvectors for (2) in the proof of 2.1 span
the eigenspace of eigenvalue b. Let us denote these as w’. Any other eigenvector in
the eigenspace will be of the form v = =, f;w’. We have >° v; = 33, 3; >, wj = 0.
Finally, since the values of components in any w’ are the same by construction, this
must also be true in v.]

The importance of this corollary is that an eigenvector of eigenvalue b must be
a Fiedler vector of L since 0 < b < A + b. Choosing any one of these vectors to

use with bisection we see that all values in v for any component of G must be the

47

same and this implies a component cannot be split into separate clusters by finding
an r-weak sign graph. As such, a Fiedler vector of L will provide a way to separate
components of the graph G. Successive, biclustering will naturally separate out all of
the components.

The examples in Figure 2.5 illustrate these theorems.

1 2 4
1 2 3 'i____Ié__i#
B e 5
* 7 IE
durn .
dum
node eigenvectors
1. 1 o0 1 1-1 -1 i 1
node eigenwvectors 21 0 1 1 0 1] o -3
qrex al 1 -1 1 31 0o 1 1 1 1] 1] 1
L 1 o -2 4: 1 0 1 1 0 1 1] 1
pE s | 1 1 1 5. 1 1 0 1 0 n -1 a
dum: 1 -3 1] 1] &: 1 1 0 1 0 1] 1] a
201 -2-4 1 10 1] 1] a
eval: 0 4b 1+4b 3+b dum: 1 0 0 -2 10 1] 1] a

eval: 0 b b &b 1+b 1+b 2+4b 44b

Figure 2.5: A connected and unconnected graph and the effect of a connecting node
(dum) on their eigenpairs

For purposes of clustering we want the option of using the normalized Laplacians:
Lsym = D 3LD% and L,, = D'L. Theorem 2.1 does not apply to them and
deriving exact solutions to the perturbation of L by a connecting node has proven to
be elusive. Perturbation of the algebraic connectivity (2nd eigenvalue) is addressed
in [34], but the issue of perturbation of the Fiedler vector is more difficult. But, from
numerical experiments we can make the following observations.

Assume b (the perturbation weight) is small relative to the minimum of the
weights in L. For the case of a connected graph, let v be the Fiedler vector of
the unperturbed problem L,,v = Av. The Fiedler vector of the perturbed problem,

A

Lyww = Myw or equivalently Lv = \,Duv, is of the form w = [v+0] where vector § is
48

small relative to the values of v and A\, = A. The perturbed Fiedler vector of G' with
the connecting node removed should then give us the same partition as the original
vector.

For the problem of the symmetric Laplacian, Ly, = D_%LD_%, we have similar
results since eigenvalues of L,,, and of L, are the same, and if v is an eigenvector
of L, then w = D3y is an eigenvector of Lyy,,. Note that one implication of this is
that the eigenvector of eigenvalue zero is no longer a constant vector.

For the case of a graph with multiple components, the Fiedler vector of the
perturbed matrix will have values distributed according to the components of the
graph. For the L, Laplacian the values of any component will be nearly a constant.
Each component may or may not have the same constant, but the eigenvector will
include both positive and negative values and so a partition of the vector will yield
non-empty partitions where a component cannot be split into separate partitions (but
could be in both).

We can now define the following algorithm for identification of components and
successive biclustering. This will be valid for the unnormalized Laplacian and we
have some intuition based on numerical experiments that it is valid for the normalized

Laplacians.

Step 1 Reduce the adjacency matrix of G' by all singleton components.
Step 2 Select a value for b.

Step 3 Add a connecting node to G as described above to create G.

Step 4 Construct the Laplacian and solve for the first few eigenpairs.
Step 5 Excluding the zero eigenvalue identify the next smallest eigenvalue.

Step 6 Use the eigenvector of this eigenvalue to partition the graph.

49

Step 7 If the partition results in an empty partition then exclude that eigenvalue

and using the next smallest eigenvalue goto Step 6.

Step 8 Using these components, repeat the process starting with step 3 until a suf-

ficient number of clusters has been identified.

Comments:

If we only want to identify all components then we can use the unnormalized
Laplacian and stop in step 5 when the eigenvalue is not b.

In Step 1, we choose to eliminate all singletons. This is not necessary, but is
done because it is easy and cheap (the diagonal value of a singleton is zero) and the
singletons don’t carry much information about their relation to other vectors (genes).
In the program to follow we just put them all in a partition by themselves. This can
significantly reduce the size of the Laplacian and speed up the analysis.

We choose b to be .001 times the weight limit. Since, all edge weights must be
greater than this limit, this makes b << all other edge weights.

One can ask, ”Why bother with the connecting node?”. Just examine the zero
eigenvectors of L. There are some practical reasons

If the graph G is connected we don’t know this and we still have to examine the
zero eigenvector. Ideally this would have an eigenvector with identical values or for
the symmetric Laplacian one which has all positive values. Then we know the graph
is connected. Numerical solutions will give eigenvectors that are not exact. When
the solutions are normalized and the dimensionality of L is very large this can result
in values close to zero including both positive and negative values. This will result
in a bad partition of the graph. Adding a connecting node allows us to identify and
ignore the zero eigenvector.

In step 6 we partition according to the r-weak sign graphs. If r is too large this can

result in two identical partitions. This is a major type of error and should terminate

20

processing less successive iterations endlessly replicate the same cluster. Since we will
partition by r-weak sign graphs the resulting partitions may intersect. As discussed

earlier, we consider this an advantage of the technique.

2.6 Successive BiClustering

In the previous section we developed an algorithm for dealing with graphs with
multiple components. This algorithm not only deals with multiple components but
also handles partitioning of a connected graph. We want to incorporate this algorithm
into another for successive biclustering applied to our original graph. We have two
problems to solve. (1) Which partition do we apply the algorithm to next?, and (2)
When do we stop?

To answer the first question we need a measure of the internal connectivity of
a graph. We would say a graph is fully connected if the graph were complete and
have the same weight on all of the edges. In this case partitioning of it would not be
meaningful. All nonzero eigenvalues are the same and every partition creates another
set of complete graphs. On the other hand a graph with no edges has no internal
connectivity.

We developed the following measure which reflects these two extremes.

(€]
n(n—1)’

Definition 2.3 The internal connectivity of a graph is where |G| = sum of

weights of all edges of G.

This is based on the observation that the number of edges in a complete graph
with n vertices is n(n — 1)/2. For convenience we have dropped the constant factor
2 in the definition of connectivity.

We will select the next cluster to partition by choosing the one with the lowest in-
ternal connectivity. Note that while this is motivated by mathematical considerations
it is in essence an adhoc procedure.

Figure 2.6 illustrates this process. The example is of a graph formed from 4 normal

distributions of data. These are centered at positions (2,3), (8,9), (2,9), and (5,6).
o1

Weights are generated via a gaussian weight function with a minimum weight. This
results in some isolated vertices (singleton clusters, in dark blue) and one cluster of 2
vertices (in red). Successive biclustering roughly identifies the original distributions.
Note that there may be vertices in more than one cluster but these are not identified

in the plots generated here.

¥
v PR
L - a = " l‘.\: i~ an
¢ TR . ¥ Tl
- . Yot 0 s
w B '}h“ ® * +:‘i" X #

&

kS £
™

o ::.:. [
singletons & 2 dusters = 7 3 dusters
s .‘l 2% £ e
Yoo T Sy
T Vg
L] ~$
s et - r -* % ;
#HE 4dusters FUE 5dusters

Figure 2.6: An example of successive bicluster

52

The solution to the second question (about stoping criteria), is also adhoc in
nature. We could choose to proceed until all partitions achieved some minimum con-
nectivity. We could also choose to proceed till a fixed number of clusters is produced,
or until we achieve a full hierarchical breakdown to one or two vertices per cluster.
In either case we have to make an a-priori judgement about these values.

Some authors have suggested using eigenvalue jumps to determine the number
of clusters to find [49]. This works well if we are looking for disconnected or nearly
disconnected clusters. For microarrays, however, we do not expect the resulting graph
to be that simple. We choose here to explore the data by looking for 16 clusters. This
choice is arbitrary, and would only be a starting point for analysis. After examination

of the results, this choice would be modified for succeeding runs.

2.7 Weight construction
In the software, several techniques are implemented to compute edge weights.

— 2 . .
sexd” where sc is a scaling

Inverse Gausian distance is computed via the function e
factor which defaults to 1 and d is the Euclidian distance between two gene expression
vectors; i.e. the norm of the difference between the two vectors. This is then limited
to zero by a radius value; i.e. if the weight is less than the radius then the edge weight
is zero. This is done to introduce sparsity to the Laplacian.

A fully connected (complete) graph can be produced. Here all of the edge weights
are one. Edges can be predefined and in this case the edge weights are one. These
techniques are implemented to analyze certain test graphs.

The technique we will use for microarray data is a Euclidean distance limited by
a radius value. When the distance is greater than the radius value the weight will
be zero, otherwise it is one. This was chosen because we will be projecting the gene

expression vectors onto the unit sphere and we do not have to handle large variation

in distances. We note that angles could be used here as a measure of distance.

93

2.8 ”Toy” experiments
In this thesis and in many of the papers referenced, so called " Toy” data is used to

analyze the algorithms presented there. The use of this data is done for two reasons.
1. validation of techniques
2. validation of software

Toy data provides test examples where the clustering results are well defined, or
at least roughly defined intuitively. For "Real world” data the clustering may not
be easily recognized. If it could be there would be no need to do the analysis. We
can also construct Toy data which should represent specific situations the software is
supposed to handle.

The Toy data gives us an objective way to test our techniques and their imple-
mentation in software. This is not always as simple as it sounds. Debugging of the
software for successive bicluster revealed several problems that required adjustments
to the algorithm and enhancements to the theory supporting them. Software testing
was thus an integral part of the overall process of doing the mathematical research.

Once the Toy data has served it’s purpose, we can now use the software to examine
"real world” data. Some of the mathematics reviewed and developed here is fairly
advanced and some rather simple. The ultimate purpose of what we have developed
is not just an exercise in pure mathematics, but hopefully has applicability to real
world data and problems. In the next section we will apply these techniques to real

microarray data.

2.9 Analysis of real microarray experiments
We will analyze yeastvalues taken in a time sequence over a metabolic shift from

fermentation to respiration. The source of this data is the Matlab demo ”Gene
54

Expression Profile Analysis” from the Bioinformatics Toolbox. The data represents
a set of 7 microarrays where all of the low level analysis has occurred prior to ours
to produce a set of gene expression levels. Further, genes with very low expression
levels have been filtered out. This leaves 822 genes represented in an 822x7 matrix.

One of the problems we have to face for multi dimensional data is how to represent
the results. Toy experiments were all 2D so these had a natural way to graph clusters.
We could do something similar for 3D but with difficulty. Microarray data will usually
have dimensions larger than this.

Listing the genes in groups is necessary because this is what a biological scientist
is going to need to evaluate the cluster. This is always possible by cross referencing a
genes matrix row number to a meta data list of gene descriptions. The listing of the
clusters for this experiment is given in Appendix D.

We also desire a graphical way to represent the results. We want to visually
confirm how ”good” the cluster is and identify interesting characteristics of the data.
The technique we choose is to graph a genes expression level (unnormalized) against
its microarray number(1 to 7 for our test data). All genes within the same cluster
are placed in the same graph. Multiple graphs are produced; one for each cluster,
see Figure 2.7. The set of genes with no edge connection to any other gene are not
represented. The number of entries in the cluster and the clusters connectivity (see
Definition 2.3) is printed above each graph.

This analysis was performed using the Matlab eigs function solving the Lv = \v
problem, vectors normalized, Euclidian distance function with a radius cut off of .2,
and a value of r = .0000001 used to compute r-weak sign graphs.

2.10 The Software

The software is implemented in Matlab. The program to perform the analysis is

coded as a function and listed in Appendix A. A program to invoke the function for

the examples in this paper is listed in Appendix 2.

95

2 1.000000 3 1.000000 120121212 31 0.150535

1 1
0 0
-1
=4 | 2 9 i T]
2 4 B 2 4 K 2 4 B 2 4 R
B85 0206152 E 0.200000
U 1
A 2 o St
2 4 B 2 4 K 2 4 B 2 4 £
8 0.250000
2 4 B 2 4 B 2 4 B 2 4 B
10 0. 46R6GET 9 0.138535
e
W
2 4 B

Figure 2.7: Microarray data clustering result

The function arguments consist of 4 fixed parameters and a variable argument list.
These are an array of the vertices to cluster, the number of clusters to produce, a string
defining the computational options, and a string defining the graphs to produce. The
variable arguments define Radius, Sigma, Scale, Mass, Edges, and Rweak the value
to use for determination of sign graphs. The first 2 arguments are required. The
remainder have defaults if not entered.

The function returns a cell array where the clusters are defined and a vector which
records a connectivity value for each cluster. The first cluster in the cell array is all
of the isolated vertices. A vertex can appear in more than one cluster.

Two Methods for determining clusters are provided in the MATLAB program,;

successive bicluster and kmeans. Kmeans clustering is described in Luxburg [56] and

o6

involves applying the kmeans algorithm to the row vectors of a matrix of the first k
eigenvectors of the graph Laplacian. It works well provided clusters are nearly dis-
connected and there are not lots of isolated vertices. It produces a classic partitioning
where a vertex can only be in a single cluster.

Parameters and their options are detailed in the program comments in Ap-
pendix A.

The computation of eigenvalues is based on the Matlab eigs or eig function. The
eigs function should be used for large sparse matrices. The eigenvalue problem can
be rcut Lv = Av, mass Lv = AMwv, or ncut Lv = ADw.

The organization of the program is as follows:

e Analyze parameters, set defaults,

e Define weight matrix

e Define connecting node edge weight
e Do kmeans clustering if requested

— let k be the number of clusters to solve for

solve the eigenvalue problem
— identify the eigenvectors of the k lowest eigenvalues (not including zero)

— perform k-means on the row vectors of these eigenvectors

define these clusters in the cell array partition

e Do successive biclustering if requested

— initialize the cell array partition with one entry containing all vertices

— split out the unconnnected vertices into their own partition entry and

define its connnectivity as 999

— select the other partition entry for processing
57

— WHILE the number of partition entries is less than the number requested

do
— bicluster the selected partition entry based on fiedler vector

* solve the eigenvalue problem

*

identify lowest nonzero eigenvalue and it’s associated eigenvector

*

B: split the partition into two clusters based on the r-weak value and

the eigenvector

*

if both partition are identical to the original then error the program

*

if either partition has zero entries then skip to next eigenpair and goto

B:
— split the selected partition into two entries based on bicluster results
— compute the connectivity of all partition entries

— select the partition entry with smallest connectivity

— end WHILE

Various plots are produced throughout the program as requested in the Plot

parameter.

o8

3. Blopex
3.1 Introduction

The software package Block Locally Optimal Preconditioned Eigenvalue Xolver
(BLOPEX) was introduced in 2005. It has recently been upgraded to Version 1.1.
BLOPEX implements the Locally Optimal BLock Preconditioned Conjugate Gradi-
ent (LOBPCG) method for solution of very large, sparse, symmetric (or Hermitian)
generalized eigenvalue problems. Version 1.1 adds support for complex matrices and
64bit integers.

The generalized eigenvalue problem for large, sparse symmetric and Hermitian
matrices occurs in a variety of traditional problems in science and engineering; as
well as more recent applications such as image segmentation and DNA microarray
analysis via spectral clustering. These problems involve matrices that can be very
large (dimension > 10°) but fortunately are sparse and frequently we only need to
solve for a few smallest or largest eigenpairs. This is the function of the BLOPEX
software.

BLOPEX has been previously described in [44] and [41] . This paper seeks to
give a more detailed description of the software than has previously been supplied.
This software includes not just the implementation of the LOBPCG method but
interfaces to independently developed software packages such as PETSc !, Hypre 2,
and MATLAB 3.

The remainder of this chapter organized as follows. We will start in section 3.2 by
a general discussion of the problem. Review some of the other software available for
the problem in section 3.3. Present the LOBPCG method in section 3.4. Section 3.5

then covers the BLOPEX software. BLOPEX is available via a new Google Source

'PETSc (Portable Extensible Toolkit for Scientific Computation) is developed by Argonne Na-
tional Laboratory

2Hypre (High Performance Preconditioners) is developed at the Center for Applied Scientific
Computing (CASC) at Lawrence Livermore National Laboratory

3SMATLAB is a product of The MathWorks™

29

site and this is covered in section 3.6. We discuss the environments BLOPEX has
been tested on in section 3.7. Give some numerical results in section 3.8, and wrap
up in section 3.9.

3.2 The Problem

We seek solutions to the generalized eigenvalue problem Az = ABx where A and
B are real symmetric or complex Hermitian. B must be positive definite. A and/or
B may be defined as a matrix or be supplied in functional form.

Note that the requirement that B be positive definite implies all eigenvalues are
finite and the symmetry of A and B imply all eigenvalues are real.

We emphasize that A and B need not be supplied in matrix form, but can be
defined as functions.

Problems of this type arise from discretizations of continuous boundary value
problems with self-adjoint differential operators [43]. We often only need the m
smallest eigenvalues or eigenpairs; where m is much less then the dimension of the
operator A. We don’t usually need solutions to high accuracy, since the discretization
of the problem is itself an approximation to the continuous problem.

The large dimensionality of the problem precludes solution by direct (factoriza-
tion) methods. Thus the need for iterative methods. But iterative methods can have
slow convergence and so we require a preconditioner [42]. The choice of precondi-
tioner is separate from the choice of iterative method.

We will be using the LOBPCG iterative method (see section 3.4). Preconditioners
are supplied to BLOPEX by the calling programs. This and the interfaces to PETSc
and Hypre make possible the use of high quality preconditioners.

3.3 Current Software

There are a number of existing software packages for solutions of large, sparse

eigenvalue problems. We discuss two of these that have been previously described in

ACM transactions.

60

Anasazi [3] is a package within the Trilinos framework, written in C++ which
uses object oriented concepts. It implements 3 block variants of iterative methods:
LOBPCG, Davidson, and Krylov-Schur.

Anasazi solves for a partial set of eigenpairs of the generalized eigenvalue problem.
It uses a preconditioner which must be supplied by the user. Starting with Trilinos
9.0 there is interoperability with PETSc.

Preconditioned Iterative Multi Method Eigenvalue (PRIMME) [54] was released
Oct 2006. It implements the JDQMR and JD+k methods to solve for a partial set
of eigenvalues of the problem Ax = Az. It does not currently handle the Generalized
Eigenvalue problem. Written in C it has an emphasis on being "user friendly”, by
which is meant a minimal parameter set can be used to obtain solutions without
extensive tuning or knowledge on the part of the user. More sophisticated users can
utilize an extended set of parameters to tune the performance.

PRIMME can handle real and complex numbers and orthogonality constraints.
The preconditioner is supplied by the user. Interfaces to PETSc and Hypre are not
mentioned and presumably not available.

Neither PRIMME or Anasazi mention interfaces to Matlab.

By contrast BLOPEX:

e handles both real and complex numbers

e is written in C

e has similar parameters as PRIMME

e has interfaces to PETSc, Hypre, Matlab, and stand alone serial interfaces
e PETSc and Hypre allow for use of high quality preconditioners

61

3.4 LOBPCG
To solve for a single eigenpair of the problem Az = ABx the LOBPCG iterative

method can be described as a 3 term recurrence formula as follows:

2 =) 4 7050 A0 -1) (3.1)
where
w® = Tr® 10 = Az _ \O Byl
AD = (20 Az@) /(Bz™, ™) the Rayleigh quotient, and,
T is a preconditioner for the matrix A.

The values 7" and v in (3.1) are chosen to minimize A*!) within the subspace
span{w®, ™ r(=D} This minimization is done via the Rayleigh-Ritz method as
described in [51]. The preconditioner T should be linear, symmetric, and positive
definite.

Use of (" and z0~Y as basis vectors for span{w®, 2@ z(=Y} can lead to ill-
conditioned Gram matrices in the Rayleigh-Ritz method, because ¥ can be very
close to 201,

The effect of basis vectors is a non-trivial problem discussed in [35]. An improve-
ment on the basis used in (3.1) was proposed by [43]. This replaces x(~1) with p®

as follows:

2D = @ 4 7050 A Dp0) (3.2)

and for the next iteration

plit) = w® 4+ ~Op@ and the other terms are as in (3.1).

62

In this case, it can be shown that span{w®, z® p@} = span{w®,z® 2=V},
So, the two iterative problems (3.1) and (3.2) are mathematically equivalent but (3.2)
is more numerically stable.

When more than one eigenpair is to be computed a block version of LOBPCG
is used. To compute the m smallest eigenpairs we want to apply the Rayleigh-Ritz

method to the subspace spanned by {xl ,wll),pg), e xﬁ,?, wm , D)} This gives m

Ritz vectors xg.lﬂ)

as estimates for the m smallest eigenvectors with estimates for
eigenvalues given by their Rayleigh quotients.

We note that the choice of block size m is in part problem dependent and in part
a tuning consideration. This is discussed in some detail in [41].
3.5 BLOPEX Software

The BLOPEX software provides functions to the user for solution of eigenvalue
problems as described in section 3.2. The software external to BLOPEX which the

user writes must do the following:

e setup matrices or functions for A and B
e setup the preconditioner T°

e provide functions for matrix-vector operations
e call LOBPCG solver in BLOPEX

BLOPEX software is in written in C. C was chosen since it provides for ease and
versatility of interfacing with a wide variety of languages including C, C++, Fortran,
and Matlab. This makes BLOPEX highly portable.

BLOPEX can be logically separated into two parts. The first part implements
the LOBPCG algorithm. We refer to this as the "abstract” code. It contains the
functions called by the user as well as a number of utility functions needed internally.

We will discuss this in detail in section 3.5.2.

63

The second part is code which provides functions for interfacing with software
packages such as PETSc, Hypre, and Matlab. One challenge for all eigensolver soft-
ware is the necessity of supporting multiple diverse formats for sparse matrices and
vectors. Functions for accessing matrix (vector) elements and doing matrix vector
operations are inherent in the calling software and BLOPEX will have need to ac-
cess these routines. This access occurs via the specific interface functions. We will

describe the interfaces in section 3.5.3.

3.5.1 Structure

Figure 3.1 shows a high level overview of BLOPEX and how it fits with the calling
software. The Driver is software written by the user which calls the LOBPCG solver
in BLOPEX abstract. The driver can be written in numerous external environments
such as PETSc, Hypre, Matlab, etc. BLOPEX provides a number of sample Drivers
which are described in section 3.5.3.

The Driver will use macros, commands, or functions from it’s environment to
define matrices, vectors, and matrix/vector operations. These are communicated to
the LOBPCG solver via parameters, (see section 3.5.2.3). To access these external
environment matrix/vector routines BLOPEX supplies interfaces.

These interfaces package data as multivectors (see section 3.5.2.2) to pass to
the LOBPCG solver and provide functions to convert parameters in formats defined
within BLOPEX to parameters specific to the external environment functions.

BLOPEX requires LAPACK functions or equivalents to perform orthonormal-
ization and solve the generalized eigenvalue problem for the Gram matrices in the
Rayleigh-Ritz method. These can be the standard LAPACK functions dsygv and
dpotrf for real, or zhegv and zpotrf for complex numbers. Equivalents from the
ACML, MKL, or ESSL libraries can be used. The addresses of the routines to use are

passed by the Driver to BLOPEX. If the parameters are not the same as the standard

64

Driver Matrix/Vector Routines

BLOPEX Interface

BLOPEX Abstract LAPACK or equivalent

Figure 3.1: Structure of BLOPEX Functions

LAPACK funtions then a function must be coded to do parameter conversions.
3.5.2 Abstract Code

This is the solver. It consists of three modules lobpcg.c, multivector.c, and
fortran_matrix.c. Small matrices and vectors that arise as result of Rayleigh-Ritz
Method are kept internal to the abstract code in Fortran column major order and
processed via routines in fortran_matrix.c.

Two routines in lobpcg.c are callable by Drivers. lobpcg_solve_double and
lobpcg_solve_complex. These routines setup a function interpreter which is a list
of function addresses. The functions in multivector.c and fortran_matrix.c
are specific to double (real) or complex numbers. These two functions then call
lobpcg_solve where the LOBPCG algorithm is implemented. As a result BLOPEX
does not have to be compiled specifically for complex or real numbers.

The functions in multivector.c provide for conversions and operations between
matrices in Fortran format and multivectors with pointers to matrices and vectors in
the external environment format. These functions in turn call interface functions to

access these matrix/vector operations.

65

3.5.2.1 Algorithms
The steps of the Block LOBPCG algorithm as implemented in BLOPEX follow
with detailed comments on various steps appearing afterwards. We list only the ma-

jor parameters here but we give a complete list and more explanation in section 3.5.2.3.

Input:

e X m starting vectors (in block form)

o A matrix or address of function to compute A x X
e B matrix or address of function to compute B * X
o T preconditioner (operator, and data)

oY constraint vectors (in block form)

Output:

e X m computed eigenvectors

o A m computed eigenvectors

Algorithm:

1. Apply constraints Y to X

2. B-orthonormalize X

3. [C,A] = RR(A, B, X) Apply Raleigh-Ritz Method
4. X = X xC Compute Ritz vectors

5. J=][1,---,m] Initialize the index set of active residuals

66

6. for k=1,---, MaxlIterations

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

R;=B*X;xA—AxX; Compute Residual vectors
Compute norms of residual vectors
Check residual norms for convergence
Exclude converged vectors from index J (soft locking)
if all vectors have converged then stop
W = operatorT (R, dataT’) Apply preconditioner to residuals
Apply constraints Y to W;
B-orthonormalize W ;
itk>1
B-orthonormalize P;
basis for RR is S = [X W, Py]
else
basis for RR is S = [X W]
end
[G,0] = RR(A, B,S) Apply Raleigh-Ritz Method
C = G(1:m,:) Get columns of G corresponding to X
A = 0O(1:m) Get eigenvalues corresponding to X

ifk>1

67

Cx

25. Partition C' = | Oy, | according to columns of X, W, and P;
Cp

26. P:WJ*CW+PJ*CP

27. else
Cx

28. Partition C' = according to columns of X and W;
Cw

29. P=W;xCy

30. end

31. X=XxCx+P

32. end

Comments:

(1) Constraints Y are previously computed or known eigenvectors. For example,
the vectors of all ones is an eigenvector of the smallest eigenvalue of a graph Laplacian.
So we can choose this as a constraint and then force all vectors of X to be B-orthogonal
to Y. In this case LOBPCG solves for the next m smallest eigenvalues. We apply
constraint Y to X via replacing X with the difference of X and the B-orthogonal
projection of X onto the subspace generated by Y; that is X = X — Y % (YT x B x
V)7l ((B*xY)T % X).

(2) B-orthonormalize X using Cholesky factorization; that is R = chol(X' x B
X); X = X x R™L. Block vector X must be composed of linearly independent vectors
to being with else orthonormalization will fail.

(3) We adopt the following notation: [G,A] = RR(A,B,S) to specify the

Rayleigh-Ritz method which finds eigenvectors G and eigenvalues A of the generalized
68

eigenvalue problem (STAS)G = A(STBS)X. STAS is referred to as the gramA ma-
trix and ST BS as the gramB matrix. S is given in block form such as [X W P] where
X, W, and P are block vectors. S forms a basis for the subspace to find estimated
eigenvectors in. Note that the eigenvectors G are chosen to be B-orthogonal.

(4) Note that the B-orthonormality of the Ritz vectors X is preserved.

(5),(9),(10) Initially all residuals of X are active. As we iterate this will change
as their norms converge towards zero. When one of the vectors in X converges to
within a prescribed tolerance it is removed from the index. This we call soft locking.
All of X will remain as part of the basis for the next iteration. However, only the
residuals (denoted by R; and CG step vectors (denoted by P;) will be used to create
the new subspace. All of X is retained on the expectation that converged vectors in
X will continue to improve.

(12) To apply the preconditioner to R, a call to a routine T provided by the
Driver is done. This function is usually coded in the Driver and must have parameters
of the form void operatorT(void * dataT, void * R, void * W) and must be
able to handle W and R as block vectors. The code for operatorT is highly dependent
on the Drivers environment.

(13),(14) We transform the preconditioned residual block vector W; to be B-
orthonormal to the constraint Y and the vectors of W; to be B-orthonormal to each
other.

(15) For k = 1 we do not have the first P; yet. It is first computed in (29) and
in (26) there after.

(17),(19) For the 1st iteration the basis for Rayleigh-Ritz is S = [X W;]. Note
that X and W are B-orthonormal with respect to their own vectors, but X is not

necessarily B-orthonormal to W;. Consequently, the symmetric Gram matrices take

69

the form

A XTAW,
gramA = STAS =
. WFAW,
and
I XTBW,
gramB = STBS =
I

where the dot notation indicates the symmetry of the matrix. Note that XTAX = A

since X is B-orthonormal.

For subsequent iterations the X, W, and P; blocks are B-orthonormal within

their blocks but not between them. So the Gram matrices are

A XTAW, XTAP,
gramA = STAS = | wWTAW, WIAP,
PTAP,

and

I XT"BW; XrBP;
gramB=S"BS=|. 1 WTBP,

I

Finally, we note that computations for the components of the Gram matrices are
optimized in the code, so they are not computed directly from the basis vectors. For
clarity these details have been omitted.

(26), (29) Computation of the block vector P corresponds to p(i*!) in equation
3.2. Note that P has the same number of rows as X.

(31) Finally, we compute a new X which is just the Ritz vectors X = S * C.

3.5.2.2 Data Types
BLOPEX defines several data types which are described here.

To deal with block vectors in various diverse formats BLOPEX defines the struc-

ture mv_MultiVector. This contains the following fields.
70

e A pointer to another structure that defines the vectors. How these vectors
are formatted depends on the interface. For example in the PETSc interface
it points to another structure mv_TempMultivector which contains fields that
define the number of vectors, active mask and a pointer to an array of point-
ers, each of which point to a Vec PETSc variable. Interfaces for Hypre, Se-
rial, and Matlab have different but similar structures. Creation of variables of

mv_MultiVector type is done by routines in multivector.c.

e An integer variable that is set to 1 when data for the pointer defined above is
allocated. This is to aid in deletion of the multivector when we are finished

with it.

e A pointer to a structure mv_InterfaceInterpreter which is a list of function

addresses. These pointers are set to the appropriate interface functions.

An mv_Multivector variable such as parameter X then encapsulates the data
and interface functions to manipulate the data.

The second data type is to deal with matrices. This also depends on the interface.
Matrices do not have to be manipulated like block vectors. Typically they are in-
volved in some matrix vector operation and just need to be passed to the appropriate
interface routine which is specified via the interpreter in the associated block vector.

So it is possible we only need to pass a pointer to the matrix as a parameter in
the form it appears in the external environment. This is what is done for the Matlab
interface. Other interfaces take a different approach. The PETSc interface includes in
a multivector like structure, variables for A, B, and KSP solver and then passes this
as the parameter for both A, B, and preconditioner data. The operatorA, operatorB,
and operatorT functions then use the appropriate variable.

Internally the BLOPEX abstract code uses data type utilities_FortranMatrix

to define Fortran style matrices. This includes variables for global column height,

71

column height, row width, pointer to position (1,1) of the matrix, and an ownsData
variable. The global height can be different from the current height because we overlay
in memory blocks of the Gram matrices to optimize their computation.

For BLOPEX version 1.1 we added a type for complex numbers which we call
komplex. Since there is no standard between C compilers for complex numbers we
chose to implement our own type along with routines for the basic math functions

of addition, subtraction, multiplication, and division. This maintains portability of

BLOPEX.

3.5.2.3 Parameters

A description of the parameters for the LOBPCG solver follows. The functional
definition can be found in include lobpcg.h available in the online site.
Some parameters are operators. For these a pointer to the operator is passed.

The operator must be defined as
void (*operatorA) (void*,void*,voidx).

If a parameter is not needed then a NULL is passed.

Parameter Description

X Required. A block vector. This is the initial guess of eigenvectors. This can be
based on prior knowledge or just random guesses. The number of vectors defines
the number of eigenvalues to solve for. On output it will contain the computed

eigenvectors.
A Optional. Use this if A is a matrix.

operatorA Required. This implements a matrix vector multiplication. If A is NULL

then it must define A as an operator and do a matrix vector multiplication.
72

B Optional. Use if B is a matrix.

operatorB Optional. Only needed if solving a generalized eigenvalue problem. This
implements a matrix vector multiplication. If B is NULL then it must define B

as an operator and do a matrix vector multiplication.

T Optional. Use this if a preconditioner is supplied. This is data in matrix form
to be passed to the preconditioner operatorT. The data is dependent on the
preconditioner that operatorT implements. It could be NULL, a preconditioned

matrix based on A, or A.

operatorT Optional. But must be supplied if a preconditioner is used. This pre-

forms the actual preconditioning on the residuals block vector.

Y Optional. This is block vector of constraints. Orthogonality of X to Y will be

enforced in the LOBPCG solver.

blapfn Required. A structure which contains the addresses to lapack functions (or

equivalents) dsygv, dpotrf, zhegv, and zpotrf.

tolerance Required. A structure containing absolute and relative tolerances to apply

to the residual norms to test for convergence.
maxlIterations Required. The maximum number of iterations to perform.

verbosityLevel Required. The LOBPCG algorithm can print error messages and
messages to track progress of the solver. verbosityLevel values control this.
Value of 0 means print no messages. Value of 1 means print error messages,
max residual norm after each iteration, and eigenvalues after last iteration.

Value of 3 means print error messages and eigenvalues after every iteration.

iterations Required. Output. The number of iterations actually performed.

73

etgs Required. Output. An array containing the eigenvalues computed.

etgsHistory Optional. Output. An array containing eigenvalues produced after

each iteration.

etgsHist Num Optional. Input. Max number of eigenvalues. This should be > the
number of eigenvalues to compute. It is used to reformat the eigsHistory array

into a matrix format. Required if eigsHistory is not NULL.

restdNorms Optional. Output. An array containing residual norms of eigenvalues

computed.

resitdHistory Optional. Output. An array containing residual norms of eigenvalues

produced after each iteration.

restdHistNum Optional. Input. Max number of eigenvalues. This should be >
the number of eigenvalues to compute. It is used to reformat the residHistory

array into a matrix format. Required if residHistory is not NULL.

3.5.3 Drivers and Interfaces

Drivers are the programs that setup the eigenvalue problem and BLOPEX ab-
stract is where they are solved. These encompass two separate environments. That
of the Driver (PETSc, Hypre, etc.) handle matrix and vector sparse formats and the
matrix vector operations on them including application of preconditioners. BLOPEX
abstract has all of the logic for the LOBPCG algorithm. The interface is where the
functionality of the two environments overlaps.

The interfaces and various multivector structures reviewed in section 3.5.2.2 can
be intimidating to a user. To overcome this we supply various Drivers which serve
both as examples and in some cases generic problem solvers.

The next sections describe the Drivers and interfaces that are available. For

details of execution of tests with these drivers and configuration for PETSc and
74

Hypre, review the Wiki’s available on the Google source html site. See section 3.6 for
more information. For execution of BLOPEX under PETSc and Hypre also see the

appendices of [41].

3.5.3.1 PETSc

BLOPEX is included as part of the PETSc distribution which must be con-
figured with the option --download-blopex=1. Scalar values in PETSc are ei-
ther real or complex and this must be specified during configuration via the option
--with-scalar-type=complex. PETSC provides parallel processing support on ma-
trix vector operations.

There are 4 Drivers distributed with PETSc located in the PETSc subdirectory
../src/contrib/blopex.

e driver.c builds and solves a 7pt Laplacian.

e driver_fiedler.c accepts as input the matrix A in Petsc format. These can
be setup via some Matlab programs in the PETSc socket interface to Matlab;
PetscBinaryRead.m and PetscBinaryWrite.m. These programs read and write
Matlab matrices and vectors to files formatted for Petsc. The version from Petsc
only supports double. We have modified these programs to also support complex
and 64bit integers. Our versions are included in the Google source directory
../blopex_petsc along with PetscWriteReadExample.m to illustrate how to

use them.

e driver_diag.c solves an eigenvalue problem for a diagonal matrix. This serves
as a test program for very large sparse matrices. It has been executed success-

fully with over 8 million rows.

e ex2f_blopex.F is an example of using BLOPEX with PETSc from Fortran.

75

3.5.3.2 HYPRE

Hypre does not support complex number or 64bit scalars, but like PETSc pro-
vides parallel support via matrix vector multiplication and high quality precondition-
ers. The BLOPEX LOBPCG solver is incorporated into Hypre programs struct.c
and ij.c located in the Hypre directory ../src/test. These programs have broad
functionality and can setup and solve 3D-7pt Laplacians. They can also input ma-
trix files in Hypre formats to construct a generalized eigenvalue problem. These
files can be created in Matlab using the Matlab matlab2hype package available on
http://www.mathworks.cn/matlabcentral /.

There is also a somewhat less intimidating example in . ./src/examples/ex1l.c
which solves a 2-D Laplacian eigenvalue problem with zero boundary conditions on
an nxn grid.
3.5.3.3 Matlab

The Matlab interface consists of m files and c files available on the Google source
site under directory ../blopex_matlab. The BLOPEX abstract files must also be
acquired from the Google source site. All c files are compiled under the Matlab Mex
compiler. Complex numbers are supported along with 64-bit integers in the newer

version of Matlab. Preconditioners are implemented in this interface as m files.

3.5.3.4 Serial

These are stand alone drivers and interfaces written in C. There are complex
and real versions. Matrices created by the drivers are in standard Fortran format.
They do not have any parallel support. They have been used primarily for BLOPEX

development testing.

76

3.6 The Google Source Site

BLOPEX source code as of Version 1.1 is maintained on the Google source code
site http://code.google.com/p/blopex/ under the SVN version manager. All source
is downloadable.

This site also provides some Wiki documents that describe tests we have executed
for all interfaces and various systems. Between the source code for the Drivers and
the Wiki’s we hope users will find BLOPEX accessable and usable.

3.7 Environments BLOPEX Tested On

BLOPEX has been tested in a wide variety of environments. The following is a

partial list covered by one or more of the Wiki’s described in section 3.6

Machines: UCD XVIB, UCAR Frost, NCAR Bluefire, Lawrence Livermore
National Laboratory, IBM PC

Operating Systems: Linux, Fedora, IBM AIX, Cygwin under Windows 7

Compilers: gcc, IBM blrts_xlc, g++, pgee, SUN mpee, AMD OPENG64

Lapack Libraries: Lapack, AMD ACML, Intel MKL, IBM ESSL

MPI: openmpi, mpich?2

3.8 Numerical Results

Some numerical tests for 3D 7-Point Laplacians of the BLOPEX implementation
of LOBPCG in Hypre have previously been reported in [44] and in PETSc and Hypre
in [41].

We report here on some results using Hypre and a few of the matrices that were
analyzed by PRIMME as reported in [54]. These matrices are available from the
University of Florida Sparse Matrix Collection at
http://www.cise.ufl.edu/research/sparse/matrices/. A direct comparison to

PRIMME'’s results is not possible since they are produced on a very different machine.
7

Matrix | Rows nnz nnz(L+U) AMD

Andrews | 60,000 | 760,154 234,019,880

finan512 | 74,752 | 596,992 5,600,676

cdfl | 70,656 | 1,825,580 | 71,684,224

cdf2 | 123,440 | 3,085,406 | 147,417,232

Table 3.1: Matrices Analyzed

All of the matrices used are symmetric positive definite. We use matrix An-
drews, which has a ”"seemingly random” sparsity pattern and not much ”structure”,
finan512, which is a stochastic matrix used for financial portfolio optimization and
cfd1 and cfd2, which are pressure matrices from structural engineering. Their char-
acteristics are described in table 3.1. Note nnz(L+U) AMD is the number of nonzeros
in L+U of the LU factorization using AMD.

Analysis was performed on a Fedora 10 OS, 4 Quad Core Opteron 2.0 Ghz
CPUs, and 64 GB RAM. Hypre was configured using openmpi with gcc compiler
and BLAS/LAPACK libraries.

To setup the matrices for processing by Hypre we downloaded the matlab versions
and converted them using our matlab2hyprelJ.m program to Hypre formats. This
file was then processed using the Hypre ij program. For example to find 5 eigenvalues
of finan512 to a tolerance of le — 6 using the BoomerAMG preconditioner we would
execute:

./ij -lobpcg -vrand 5 -tol le-6 -pcgitr 0 -itr 200 -seed 1 -solver 0 -fromfile finan512

For the first experiment (Table 3.2), we process all of the files in single processor
mode. Both the times to setup the preconditioner and to execute the LOBPCG
solver are reported. The matrix Andrews has an eigenvalue very close to zero, which

causes problems orthonormalizing the residual. To overcome this a shift of 1e — 7 was

78

Eigenvalues to solve for

Matrix | Setup | 1 2 3 4 5 7110 15

Andrews 29 4 18 34 62 | @ | * | * *

finan512 1 5 10 | 22 | 37 | 43 |66 | 90 | 203

cdfl 25 152 | 297 | 405 | 599 | 737 | * | * *

cdf2 36 | 335|644 | 1342 | * * ko o* *

All times rounded to nearest second.
* Analysis not performed.

@ Failure of dsygv routine.

Table 3.2: Single Processor Setup and Solution Time

applied to the matrix. This was successful up to solution for 5 eigenvalues where
dsygv routine failed. Also, note the relatively large preconditioner setup times for
all matrices except finan512. This seems to reflected in the nnz(L+U) AMD values
shown in Table 3.1. The setup times are independent of the number of eigenvalues to
solve for.

The second experiment (Table 3.3) studies the effect of parallel processing on
solution time for matrix finan512. It solves for 5 eigenvalues using openmpi varying
the number of processors. For example to run with 2 processors, we would split

finan512 into 2 Hypre files using matlab2hyprelJ.m and process as follows:

mpirun -np 2 ./ij -lobpcg -vrand 5 -tol 1e-6 -pcgitr 0 -itr 200 -seed 2 -solver 0

-fromfile finan5122

3.9 Summary

Version 1.1 of BLOPEX has been implemented in PETSC version 3.1-p3 and sub-

mitted to Hypre for inclusion. Version 1.1 incorporates the new features of complex
79

Processors | Setup Time | Solution Time
1 42 42.86
2 .96 25.17
3 .63 15.00
4 40 10.82
5 31 8.35
6 24 6.44
7 .20 5.20

Table 3.3: Multiple Processor Setup and Solution Time for finan512

numbers and 64 bit integers. The new Google code site for BLOPEX makes testing

documentation available to the user. BLOPEX has interfaces to popular software

packages PETSc, Hypre, and Matlab.

80

APPENDIX A. SpectralCluster Function

This is the primary function used for microarray analysis.

function [partition, con] = spectralcluster(X,numclusters,options,plot,varargin)
% Spectral clustering

% Input: Fixed arguments

yA X points (vertices) to cluster

yA numclusters number of clusters to find

yA options options for computation (as a string)

/2 options for computing weights

h gauss - use gaussian to compute weights

yA euclidian - use euclidian distance (default)
h full - make fully connected graph

yA edges - edges predefined, weights=1

/A norm - normalize point vectors

o = what solver to use

/A eigs - use eigs to compute e-val

/A eig - use eig (default)

/2 which problem to solve

h ncut - solve L*x=lambda*D*x

h mass - solve Lx=lambdaxM*x

yA rcut - solve Lxx=lambda*x - Rcut (default)
/2 how to compute multiple clusters

h kmeans - cluster via kmeans

yA bicluster - cluster via bicluster (default)
yA plot plots to produce (as a string)
/et

h nodes - nodes in colors specified by cdx
h edges - edges in colors specified by cdx
/A eigval - eigenvalues

b eigvec - fiedler vector

yA clusters - graph with clusters in different colors
h info - list misc info

% Input: Variable arguments

81

2
h
h
2
h
h
2
h
h
h
h
h

Radius
Sigma
Scale
Mass
Edges

Rweak

Oputput: partition

con

if nargin < 3

value to use to limit weights

local density or p-value to use in weights
multiplier for weight computation

vector of node masses

predefined edges

Rvalue for weak sign graph clustering

cell array of indexes to nodes showing partitioning

vector of connectivity values for clusters

error (’At least 2 parameters are expected’);

end

% set problem size and defaults

[xsize,dim]=size (X);

radius = 1;

sigma=ones(xsize,1); %uniform local density

scale = 1;

Mass = ones(xsize,1);

edges

0;

rweak = 0;

vi=size(varargin,?2);

i:

1;

while i<vi

if strfind(varargin{i},’Radius’)

radius=varargin{i+1};

i=i+2;

elseif strfind(varargin{i},’Scale’)

scale=varargin{i+1};

i=i+2;

elseif strfind(varargin{i},’Sigma’)

sigma=varargin{i+1};

i=i+2;

elseif strfind(varargin{i},’Edges’)

edges=varargin{i+1};

82

i=1+2;

elseif strfind(varargin{i},’Mass’)
Mass=varargin{i+1};
i=1+2;

elseif strfind(varargin{i},’Rweak’)
rweak=varargin{i+1};
i=1+2;

else
i=i+1;

end

end

global OPTIONS NUMCLUSTERS DW PLOT RWEAK;
OPTIONS = optioms;

PLOT = plot;

NUMCLUSTERS = numclusters;

RWEAK = rweak;

color=[0 0 1; Y%blue
10 0; Y%red

0 10; Ygreen
0 0 0; %black
011; Ycyan
10 1; Ymagenta

11 0]; %yellow
color=[color; color; color; color];
S
% define similarity (weight) matrix S(i,j)
% since diag is zero and symmetric we only need upper part
S —
if strfind (OPTIONS, >norm’)

% normalize X vectors

tic

for i=1:xsize

X(i,:)=X(1,:)/norm(X(i,:));
end
sprintf (’normalize %f’,toc)

end

83

if strfind (OPTIONS, ’gauss’)
% gaussian (adj by sigma)
tic
S=zeros(xsize,xsize);
for i=1l:xsize
for j=i+l:xsize
% calculate a local density sigma
sc=min(sigma(i),sigma(j)) "2/ (sigma(i)*sigma(j));
sc=scx*scale;
% compute inverse gausian distance
S(i,j)=exp(-sc*norm(X(i,:)-X(j,:))"2);
% exclude wts that are too small
if S(i,j) < radius
8(1,3)=0;
end
end
end
sprintf (’gauss mean %f’,mean(mean(S)))
sprintf (’gauss time %f’,toc)
elseif strfind(OPTIONS,’full’)
% fully connected graph wt 1 (adj by sigma)
npt=size(X,1);
yA [xdum, edges]=completegraph (npt,0,0,1);
yA clear xdum
S=zeros (npt) ;
for i=1:npt-1
for j=i+l:npt
S(i,j)=scale*min(sigma(i),sigma(j)) 2/ (sigma(i)*sigma(j));
end
end
elseif strfind(OPTIONS, ’edges’)
% edges supplied weight 1 for all edges
if edges ==
error(’Variable argument Edges is missing’);
end
weights=ones(size(edges,1),1);

S=adjacency(edges,weights) ;

84

S=full(S);
else
% wt 1 if inside radius (adj by sigma)
S=spalloc(xsize,xsize,200*xsize);
for i=1l:xsize
for j=i+l:xsize
a=norm(X(i,:)-X(j,:));
if a < radius
S(i,j)=scale*min(sigma(i),sigma(j)) "2/ (sigma(i)*sigma(j));
end
end

end

end

if strfind(PLOT,’info’)
sprintf (’vertices %f’,xsize)
sprintf (’pct nnz %f’, (nnz(S)*100)/(xsizexxsize))

end

A

% compute dummy node weight

% this to be used later in solve function

Y

% edge wt is min of .1 of smallest non zero wt in S or .001
DW=full (min(S(S>0)))*.1;

DW=min (DW, .001) ;

DW=DW/xsize;

% define Graph (i.e. adjacency matrix)
S —
W=S+S’;
clear S;
% plot graph without edges
if strfind(PLOT, ’nodes’)
cdx=ones(xsize,1);
figure

scatter(X(:,1),X(:,2),30,color(cdx,:),’filled’)

85

title(’Graph nodes’)

end

T

plot graph with edges

if strfind(PLOT, ’edges’)

cdx=ones (xsize,1);

figure

i=xsize-1;

gplot2(W,X,3,cdx);

title([’Graph nodes & edges:’ OPTIONS])

end

h
2
2
h

do kmeans clustering on column vector

defined by 1st k+1 eigenvectors

if strfind(OPTIONS, ’kmeans’)

% solve the e-val problem
k1=NUMCLUSTERS+10;
[V,e,eidx]=solve(W,Mass,kl);
% define row vectors of 1st numcluster rows of eigenvectors V
% excluding first O eigenvalue
k=numclusters;
yidx=eidx(2:k+1);
pidx=kmeans(V(:,yidx),k,’emptyaction’,’singleton’,’MaxIter’,200);
for i=1:k
partition{i}=find(pidx==1i);
end
% plot eigenvalues
if strfind(PLOT,’eig’)
figure
stairs(1:k1l,e(1:k1));
title([’Eigenvalues:’ OPTIONS]);
% ploteig(W,V(:,idx),16);

end

end

% find clusters via successive bicluster

if strfind (OPTIONS, ’kmeans’)
else
% put all unconnected vertices in partition 1
% and restrict analysis to remaining vertices
sumW=sum (W) ;
if sum(sumW==0) "= 0
partition{1}=find (sumW==0) ;
partition{2}=find (sumW~=0);
pi=2;
psize=2;
NUMCLUSTERS = NUMCLUSTERS + 1;
else
partition{1}=1:xsize;
pi=1;
psize=1;
end
pnz=pi;
while psize < NUMCLUSTERS
% bicluster least connected cluster
% pass cluster pi to bicluster
idx=partition{pil};
[partl,part2]=bicluster (W(idx,idx) ,Mass(idx));
% incorporate partl and part2 into partition
% partl and part2 are indices wrt idx
% so must convert to indices of original vertices
partition{pi}=idx(partl);
psize = psize + 1;
partition{psize}=idx(part2);
% find least connected cluster
con=zeros(l,psize);
% if partition 1 if for unconnected vertices exclude these
if pnz"=1
con(1)=999;
end
for i=pnz:psize

ps=size(partition{i},2);

87

if ps==0
error(’0 partition size in cluster’)
end
ps=ps*(ps-1);
if ps==0 Yeliminate single nodes from consideration
con(i)=999;
else J,compute connectivity relative to fully connected graph
con(i)= sum(sum(W(partition{i},partition{i})));
con(i)= con(i)/ps;
end
end
% find partition least strongly connected
m=min(con);
pi=find(con==m) ;
% if equal connectivity then take 1st one
if size(pi,2)>1
pi=pi(1);
end
if strfind(PLOT, ’debug’)
con
partition
pi
end
end

end

if strfind(PLOT,’info’)
fprintf(1,’%s \n’,’Partition size and connectivity’)
for i=1:size(partition,2);
fprintf(1,°%5d %8f \n’,size(partition{i},2),con(i))
end

end

% plot results of clustering

A —
if strfind(PLOT,’clusters’)

figure

88

if dim == 2 %, vertices lie in a plane
numpart=size(partition,2);
for i=1:numpart
ix=partition{i};
if 1 < 8
scatter(X(ix,1),X(ix,2),30,color(i,:),’o’,’filled’)
elseif i < 15
scatter(X(ix,1),X(ix,2),30,color(i,:),’*’)
else
scatter(X(ix,1),X(ix,2),20,color(i,:),’s’,’filled’)

end
if i==
hold on

end
end
title([’Clusters:’ OPTIONS]);
hold off
YA figure
% gplot (W,X, %) ;

else % vertices in more than 2 dimensions
% problem with indexes in plot stmt

% don’t get this after return to calling pgm

b for ¢ = 1:NUMCLUSTERS
% subplot (4,4,c);
% Y=X(partition{c},:);
yA plot (Y)
yA axis tight
% title([’Clusters:’ OPTIONS]);
% end
end
end

function [partl,part2]=bicluster(W,Mass)

global OPTIONS
% save the initial size
origsize = size(W,1);

% solve the e-val problem

89

k1=4;
[V,e,eidx]=solve(W,Mass, k1) ;
% do a single bicluster
for i=1:k1

if e(i) > 1e-10
find(V(:,eidx(i))>=-RWEAK) ;
find(V(:,eidx(i))<=RWEAK) ;

partil

part2
% if original partition is same as partl and part2 then error
if origsize==size(partl,l) & origsize==size(part2,1)
error (’Bicluster error. Same size partitions. r value possibly too large.
end
% dummy node may introduce empty partition when graph
% is fully connected to begin with and after node is
% removed from evec, in this case keep looking.
% 1st evec where this does not occur is real fiedler vec
if size(part1,1)>0 & size(part2,1)>0
break
end
end
end
if strfind(PLOT,’eigvec’)
V(:,eidx(i))
end
% plot eigenvalues
if strfind(PLOT,’eigval’)
figure
stairs(1:k1,e(1:k1));
title([’Eigenvalues:’ OPTIONS]);
% ploteig(W,V(:,idx),16);
end

end

function [V,e,eidx]=solve(W,Mass,k1)

global OPTIONS DW

% add dummy node to elim multi components

if strfind (OPTIONS,’full’)

90

xs=size(W,1);
else
xs=size(W,1)+1;
for i=1:xs-1
W(i,xs)=DW;
W(xs,i)=DW;
end
W(xs,xs)=0;

end

SD = sum(W,2);
sparse(l:xs,1:xs,8D);

D - W;

% solve L for 1st (low to high) k1 e-value, e-vectors
% note: Matlab returns e-values in a diag matrix
k1=min(k1,xs);
if strfind (OPTIONS, ’eigs’)
opts.issym=1;
opts.disp=0;
warning off MATLAB:nearlySingularMatrix
if strfind (OPTIONS, ’ncut’)
[V,E,flagl=eigs(L,D,k1,’sm’,opts);
if flag "= 0; flag; end
elseif strfind(OPTIONS, ’mass’)
% add a dummy mass
if strfind(OPTIONS,’full’)
else
Mass=[Mass; DW]; ’dummy mass
end
M=sparse(diag(Mass));
[V,E,flagl=eigs(L,M,k1, ’sm’ ,opts);
if flag "= 0; flag; end
else
% warning: setting the sigma in eigs too low can result in
% ’matrix is singular to working precision’ and e-val of NaN
% .001 is too low
[V,E,flagl=eigs(L,k1,.01,0pts);

91

if flag "= 0; flag; end
end
warning on MATLAB:nearlySingularMatrix
else
L=full(L);
D=full(D);
if strfind(OPTIONS, ’ncut’)
[V,E]l=eig(L,D);
elseif strfind(OPTIONS, ’mass’)
if strfind (OPTIONS,’full’)
else
Mass=[Mass; DW]; ’%dummy mass
end
M=full(diag(Mass));
[V,E]l=eig(L,M);
else
[V,El=eig(L);
end
end
% force eigenvalues into low to high order
E=sum(E) ;
[e,eidx]=sort(E);
e(1:k1)
%don’t include the dummy node
if strfind (OPTIONS, full’)
else
V=V(1:xs-1,:);
end

end

end

92

APPENDIX B. SpectralClusterTest Driver
This is a Matlab program used to produce some of the examples presented in the
paper. It demonstrates how to call the spectralculster function to perform recursive

biclustering.

% spectralcluster tests
test=3;
switch test

case 1
% four clusters normally distributed around
% found points in R"2
randn(’state’,5)
X=sample([2,3],1,50);
Y=sample([8,9],2,80);
X=[X; Y];
Y=sample([2,9]1,1,30);
X=[X; Y];
Y=sample([5,6],.5,40);
X=[X;Y];

n=size(X,1);

cdx = spectralcluster(X,5,’eig,gauss’,’edges,clusters,info,debug’,’Radius’, .02, Rweak’,

case 2
% yeastvalues from Matlab demo "Gene Expression Profile Analysis
% these are after filtering to eliminate genes with low expression
% this is a set of 7 microarrays, taken in a time sequence for
% metabolic shift from fermentation to respiration
load c:\cnsdemo\yeastvalues.mat
X=yeastvalues;
[cdx,con] = spectralcluster(X,16,’eigs,norm’,’info’,’Radius’, .2, Rweak’,.0000001);
% [cdx,con] = spectralcluster(X,16,’eigs’,’info’,’Radius’,2, Rweak’,.0000001) ;
[xsize,dim]=size(X);
% we don’t plot the first partition since this is the collection of
% isolated vertices and carries no obvious information
figure(’Color’,’white’)

93

for ¢ = 2:17
subplot(4,4,c-1);
plot(1:dim,X(cdx{c},:))
t=sprintf (°%d %f’,size(cdx{c},2),con(c));
title(t)
axis tight
end
case 3
% 5pt complete + 3pt complete+ 4pt complete
[pl,el]l=complete_graph(5,0,0,2);
[p2,e2]=complete_graph(3,5,0,2);
[p3,e3]=complete_graph(4,0,6,2);
points=[pl; p2; p3;2.5 3];
e2=e2+5;
e3=e3+5+3;
edges=[el;e2;e3;1 13;7 13;9 13];

cdx = spectralcluster(points,3,’edges,eig,ncut’,’clusters,edges’,’Edges’,edges);

otherwise

end

94

APPENDIX C. Subroutines Used by SpectralCluster Funtion

These are the subroutines call by the Matlab spectralcluster function.

function gplot2(W,points,range,Idx,area)

% plot the partition of a graph with different edge weights

h

% inputs W weighted adj matrix

yA points x,y coord of graph nodes

yA range max graphed size of an edge

% Idx partition of the graph, values 1,2,3,...
yA area size of nodes

n=size(points,1);

if nargin < 5

area = 30;

end

if nargin < 4

Idx=ones(1,n);

end

if nargin < 3

range = 3;

end

hold on

% find range of vertex coord and adj axes

xmin=min(points(:,1));

xmax=max (points(:,1));

ymin=min(points(:,2));

ymax=max (points(:,2));

axis([xmin-1 xmax+1 ymin-1 ymax+1]);

% plot nodes
color=[0 0 1; Y%blue

10 0; Y%red
0 10; %green

95

0 0 0; Y%black
011; %cyan
10 1; Ymagenta
11 0]; %yellow

color=[color; color; color; color];

scatter(points(:,1) ,points(:,2),area,color(Idx,:),’filled’)
% for i=1:n

% plot(points(i,1),points(i,2),’ *b’)

% end

% find edges
[x,y]=find (triu(W));
edges=[x,y];

n=size(edges,1);
% plot edges
idx=triu(W)>0;
xmin=min(W(idx));

xmax=max (W(idx));

for i=1:n
X=[points(edges(i,1),1) points(edges(i,2),1) 1;
Y=[points(edges(i,1),2) points(edges(i,2),2) 1;
% compute line width in points
if xmax==xmin
width = .5;
else
width=(W(edges(i,1) ,edges(i,2))-xmin)/(xmax-xmin) ;
width=width*range+.3;
end
line(X,Y,’LineStyle’,’~-’,’Color’,’b’, ’LineWidth’ ,width);
end

hold off

function W=adjacency(edges,weights)

96

% Produce adjacency matrix of graph

% defined by input parameters edges and weights

% Graph nodes are numbered from 1 to N.

% The highest order node should have an edge.

% Input paramater edges has an entry for each graph edge
% edges(1,1) is node with connection to edges(1,2).

% weights(1) is weight to assign to edge 1.

% Get number of graph nodes

N=max (max (edges)) ;

%Build sparse adjacency matrix
7#Note that matrix is symmetric
r=[edges(:,1);edges(:,2)];
c=[edges(:,2);edges(:,1)];
v=[weights weights];

% Build NxN sparse matrix

% W(r(i),c(i))=v(i)

W=sparse(r,c,v,N,N);

97

APPENDIX D. List of Genes by Cluster

Gene NCBI locus tags corresponding to the Clusters extracted from the Matlab

demo ”Gene Expression Profile Analysis”.

—---- Cluster Sequence 2, Number of

YGLO59W

YOR177C

—---- Cluster Sequence 3, Number of
YCRO36W YMR104C YOR032C

—---- Cluster Sequence 4, Number of
YBRO50C YJL164C YJROO8W YKLO91C
YBRO51W YPROO2W YBRO56W YDL234C

YHLO39W

YGRO52W

—---- Cluster Sequence 5, Number of

YALO34C
YCRO91W
YLR164W
YILOOTW
YNROO7C
YELO39C
YPR150W

YBLO43W
YDL204W
YBLO48W
YIL101C
YOR0O97C
YGR146C

YBLO49W
YDL218W
YDR043C
YJLO6TW
YPL185W
YIL113W

YBR046C
YDR330W
YDR313C
YJR155W
YGR243W
YKL217W

—---- Cluster Sequence 6, Number of

YALOO3W
YDR144C
YJRO63W
YNL175C
YPLO12W

YALO12W
YDR384C
YLR196W
YNL207W
YPR137W

YBRO48W
YELO26W
YLLO47W
YNL303W
YCLO53C

YCLO54W
YGR155W
YMR131C
YNRO50C
YCLX02C

Genes 2,

Genes 3,

Genes 12,
YPL256C
YFRO55W

Genes 31,
YBR285W
YKLO93W
YGR236C
YKLO16C
YNLO93W
YMR107W

Genes 85,
YDL148C
YGR159C
YNL111C
YNRO54C
YDL083C

98

Connectivity 1.000000

Connectivity 1.000000

Connectivity 0.121212

Connectivity 0.150538

Connectivity 0.206162

YDRO25W
YMR229C
YNL182C
YPR144C
YDR398W
YGR103W
YJRO71W
YMRO37C
YNL313C
YDLO63C
YLROOOW
YMRO93W

YGRO92W
YMR290C
YNL256W
YALO36C
YELO40W
YILO53W
YKLOOSW
YMR217W
YOR116C
YDL213C
YLR129W
YNLOO2C

YGR160W
YNLO60C
YOR361C
YBR247C
YERO36C
YJL122W
YKLO81W
YMR239C
YPL126W
YGLO29W
YLLOO8W
YNL120C

YHR128W
YNL110C
YPLO43W
YDL182W
YGLO76C
YJL148W
YLR186W
YNLO75W
YPL226W
YKLO78W
YLR355C
YNRO67C

—---- Cluster Sequence 7, Number of
YCRO19W YDR436W YJROO6W YNRO34W

YDR101C

—--—— Cluster Sequence 8, Number of

YALO54C
YDR505C
YILO57C
YCRO10C
YPRO30W

YERO24W
YERO65C
YMR118C
YDL215C
YDL215C

YGR0O67C
YJLO8OW
YNL117W
YDROOOW

YLR142W
YCROO5C
YNL195C
YKL171W

—--—— Cluster Sequence 9, Number of

YBR116C
YNROO2C
YDL245C
YGR110W
YKL187C
YERO15W
YDR262W

YDRO9S6W
YPL134C
YELO12W
YHLO32C
YLR267W
YMLO54C
YGR224W

YDR216W
YPL262W
YERO96W
YHRO96C
YORO27W
YOLO84W
YJROOSW

YMLO42W
YBR117C
YERO9O8W
YJLO45W
YPL109C
YBR298C
YORO19W

YMR049C
YNL132W
YPLO93W
YDR206W
YGLO78C
YJR041C
YLROS56W
YNL141W
YALO25C
YKLO82C
YLR449W
YOLO10W

Genes 6,
YBRO69C

Genes 22,
YKRO97W
YFLO30W
YPLO54W
YLR377C

Genes 35,
YNLOOOW
YDL199C
YGL153W
YKL107W
YPL135W
YDL233W
YPL201C

99

Connectivity 0.200000

Connectivity 0.129870

Connectivity 0.159664

—--—— Cluster Sequence 10, Number of

YBR241C
YGR231C
YMRO68W
YLR254C
YDR275W

YDR148C
YJL144W
YBR203W
YLRO8SOW
YNRO71C

YDR306C
YML131W
YDRO30C
YMRO30W
YNRO73C

—--—— Cluster Sequence 11,
YNL174W YPL183C YMR108W
YKL191W YNL216W YPR136C

—--—— Cluster Sequence 12,

YBLO15W
YDLOO4W
YDR272W
YFLO14W
YJL166W
YLR168C
YLR290C
YMR181C
YOLO53C
YPL230W
YBLO64C
YCLO35C
YDR125C
YDR533C
YGR044C
YGR250C
YTRO38C
YJRO80C
YLR219W
YLLO26W
YMR311C
YNL274C
YOLO71W

YBRO52C
YDL124W
YDR358W
YGRO19W
YJR104C
YLR216C
YLR356W
YNLO15W
YOR052C
NORF 7
YBR139W
YCRO21C
YDR171W
YERO67W
YGRO88W
YHRO51W
YJL137C
YKLO36C
YLRO93C
YLR271W
YNL134C
YOL117W
YOR049C

YBRO72W
YDRO70C
YELO11W
YGR111W
YKLO65C
YLLO41C
YML100W
YNLO37C
YOR220W
YALO6OW
YBR147W
YDL181W
YDR272W
YGLO37C
YGR130C
YHR104W
YJL161W
YKL141W
YLR149C
YLR2956C
YNL160W
YORO31W
YOR2156C

YGR043C
YOR120W
YDR494W
YBLO86C

Number of
YBR155W

Number of
YBR169C
YDRO74W
YELO24W
YIL124W
YKLO67W
YLLO23C
YML120C
YNL173C
YOR244W

YARO28W
YBR214W
YDROO1C
YDR453C
YGL187C
YGR132C
YHR195W
YJL185C
YLR193C
YKRO58W
YML128C
YNL200C
YOLO32W
YOR273C

Genes 23, Connectivity 0.189723
YGR201C
YBR280C
YJL170C
YDL169C

Genes 8, Connectivity 0.250000
YJL109C

Genes 269, Connectivity 0.118127
YBR183W
YDR258C
YER141W
YIL162W
YKLO85W
YLR270W
YMR173W
YOL126C
YPL186C
YBLO5OW
YBR256C
YDRO77W
YDR529C
YGL259W
YGR182C
YIL169C
YJRO34W
YLR217W
YKRO76W
YMR105C
YNL252C
YO0L048C
YOR289W

100

YOR317W
YPRO98C
YBLO99W
YDLO22W
YFL0O54C
YHLO21C
YJRO96W
YLR258W
YMR110C
YNLO45W
YOR374W
YPR149W
YBLO78C
YBR222C
YDL023C
YDRO85C
YDR377W
YER158C
YGL121C
YGRO70W
YGR244C
YHR209W
YJL151C
YKL151C
YLRO81W
YLR423C
YMR136W
YMR250W
YNL194C
YOLO83W
YPL123C

YPLO87TW
NORF 4
YBL107C
YDR032C
YFRO33C
YHRO87W
YKL148C
YLRO38C
YMR133W
YNL115C
YPLO04C
YDR258C
YBL100C
YBR230C
YDLO67C
YDR231C
YDR513W
YER182W
YGL191W
YGR142W
YGR248W
YILO87C
YJL1556C
YKL193C
YLR299W
YMLOO4C
YMR170C
YMR297W
YNROO1C
YORO65W
YPL223C

YPL1656C YPRO20W YPRO26W
NORF 8 NORF 54 YBLO75C

YBRO54W
YDR178W
YGLOO6W
YJL102W
YKL150W
YKRO67W
YMR145C
YNL305C
YPLO78C
YALO17W
YBL108W
YCLO25C
YDLO91C
YDR277C
YERO35W
YFRO156C
YGL199C
YGR174C
YHLO24W
YIL107C
YJRO48W
YKRO16W
YLR327C
YMRO31C
YMR188C
YNLO52W
YOL153C
YORO89C
YPR184W

—--—— Cluster Sequence 13,

YARO73W
YDLO82W
YERO70W
YHLO33C

YBR092C
YDL130W
YERO74W
YHR141C

YBR187W
YDR382W
YER117W
YHR216W

YBR126C
YDR342C
YGL198W
YJR019C
YLR178C
YLR304C
YMR196W
YOR136W
YPL154C
YBLO30C
YBR101C
YCROO7TW
YDRO31W
YDR329C
YERO79W
YGLO45W
YGROO8C
YGR194C
YHRO16C
YJLO79C
YJR121W
YKR046C
YLR345W
YMRO56C
YMR1956W
YNL10OW
YORO35C
YOR161C
NORF 46

Number of
YBR189W
YDR450W
YGRO85C
YILO69C

YBR269C
YERO53C
YGR149W
YJRO73C
YLR252W
YMROOOW
YMR271C
YOR178C
YPL196W
YBLO38W
YBR149W
YDLO21W
YDRO59C
YDR343C
YER150W
YGLO4TW
YGRO28W
YGR238C
YHR092C
YJL103C
YKLO026C
YLR251W
YLR395C
YMRO81C
YMR197C
YNL144C
YORO41C
YOR347C

Genes 143, Connectivity 0.140451
YBR191W
YELO54C
YHLOO1W
YJL136C

101

YJL190C
YLRO48W
YLR340W
YNL247W
YOR310C
YBLO24W
YGL135W
YJL189W
YLRO75W
YML123C
YOL127W
YALO38W
YBR249C
YDRO64W
YHLO15W
YLR0O62C
YMR318C
YPL198W
YDRO37W
YDR471W
YGL123W
YIL133C
YLR249W
YOL040C
YPR102C

YLR198C
YLRO76C
YLR384C
YNL301C
YOR312C
YDR165W
YGRO34W
YKL181W
YLR339C
YNL178W
YOLO77C
YBLO27W
YDL136W
YDR418W
YHRO89C
YLR344W
YNLO65W
YPL220W
YDR321W
YER110C
YGR148C
YJL177W
YLR325C
YORO63W
YPR132W

YLR212C
YKRO57W
YLR432W
YNL327W
YPL142C
YDR341C
YHR215W
YLR175W
YLR367W
YNL302C
YOR153W
YBRO32W
YDL208W
YER131W
YHR208W
YLR372W
YNLO69C
NORF 17
YDR417C
YFRO31BC
YGR214W
YJR123W
YLR441C
YOR309C
NORF 20

—--—— Cluster Sequence 14,
YBL045C YBRO67C YIL125W
YLR173W YOLO53W YGL192W

—--—— Cluster Sequence 15,
YCLX09W YPR043W YBR218C
YNLO67W YDRO39C YDR491C

YLL045C
YKRO59W
YMR121C
YOL120C
YPL160W
YDR365C
YILO18W
YLLO44W
YLR409C
YNRO53C
YOR335C
YBR106W
YDRO12W
YGLO30W
YLR180W
YLR448W
YNL119W
YBLO76C
YDR447C
YGLO31C
YGR264C
YJR145C
YMR242C
YPLO81W

Number of
YJL163C
YMR191W

Number of
YLR341W
YGR094W

YLR044C
YLR264W
YNLO13C
YOR224C
YPR145W
YEROO2W
YILO52C
YLR029C
YLR413W
YOL121C
YOR369C
YBR181C
YDRO6OW
YGL102C
YLRO6OW
YMLO63W
YOR234C
YDL167C
YDR449C
YGL103W
YHR203C
YKLOO6W
YNLO96C
YPL131W

Genes 10, Connectivity 0.466667
YKL109W
YBRO39W

Genes 9, Connectivity 0.138889
YPR116W

102

—--—— Cluster Sequence 16, Number of Genes 13, Connectivity 0.269231
YALO26C YARO27W YKLO35W YER044C YDR516C

YFRO53C YKL142W YMR278W YOLO82W YIL111W

YKL103C YLR257W YOR285W

—---- Cluster Sequence 17, Number of Genes 4, Connectivity 0.333333

YGL158W YCRO39C YMR232W YLR297W

end

103

1]

2]

[3]

[10]

[11]

[12]

[13]

REFERENCES

Charles J. Alpert, Andrew B. Kahng, and So-Zen Yao. Spectral partitioning
with multiple eigenvectors. Discrete Applied Mathematics, 90:3—26, 1999.

Charles J. Alpert and So-Zen Yao. Spectral partitioning: The more eigenvectors,
the better. In Proc. ACM/IEEE Design Automation Conf, pages 195-200, 1994.

C. G. Baker, U. L. Hetmaniuk, R. B. Lehoucq, and H. K. Thornquist. Anasazi
software for the numerical solution of large-scale eigenvalue problems. ACM
Transactions on Mathematical Software, 36(3):13:1-13:77, July 2009.

Turker Biyikoglu, Josef Leydold, and Peter F. Stadler. Laplacian Figenvectors
of Graphs. Springer-Verlag, Berlin Heidelberg, 2007.

Benjamin Milo Bolstad. Low-level Analysis of High-density Oligonucleotide Ar-
ray Data. PhD thesis, University of Waikato, 2004.

Edited by Charles-Edmond Blchot and Patrick Siarry. Graph Partitioning. Wi-
ley, New York, 2011.

Tony F. Chan, Tony Chan Ciarlet, and W. K. Szeto. On the optimality of
the median cut spectral bisection graph partitioning method. SIAM Journal on
Scientific Computing, 18:943-948, 1997.

Duhong Chen, J. Gordon Burleigh, and David Fernandez-Baca. Spectral parti-
tioning of phylogenetic data sets based on compatibility. Syst. Biol., 56(4):623—
632, 2007.

S.Y. Cheng. Eigenfunctions and nodal sets. Comment. Math. Helvetici, 51:43—
59, 1976.

Yun Chi, Xiaodan Song, Koji Hino, and Belle L. Tseng. Evolutionary spectral
clustering by incorporating temporal smoothness. In Proceedings of the 13th
ACM SIGKDD international conference on Knowledge discovery and data min-
ing, KDD 07, pages 153-162, New York, NY, USA, 2007. ACM.

Fan R. K. Chung. Spectral Graph Theory, chapter 2.2. A.M.A. CBMS, Provi-
dence, Rhode Island, 1997.

T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms,
2nd Edition. MIT Press, Cambridge, Massachusetts, 2001.

R. Courant and D. Hilbert. Methods of Mathematical Physics, Vol. 1. Inter-
science, New York, 1953.

104

[14]

[15]

[16]

[19]

[20]

E. Brian Davies, Graham M.L. Gladwell, Josef Leydold, and Peter F. Stadler.
Discrete nodal domain theorems. Linear Algebra and its Applications, 336:51-60,
2001.

Harry F. Davis. Fourier Series and Orthogonal Functions, chapter 4.2. Dover
Publications, Inc., New York, 1963.

Inderjit S. Dhillon, Yugiang Guan, and Brian Kulis. A unified view of kernal
k-means, spectral clustering and graph cuts. UTCS Technical Report TR-04-25,
2005.

Inderjit S. Dhillon, Yugiang Guan, and Brian Kulis. Weighted graph cuts with-
out eigenvectors: A multilevel approach. IEEE Trans. Pattern Anal. Mach.
Intell, 29, 2007.

Chris Ding, Xiaofeng He, and Horst D. Simon. On the equivalence of nonnegative
matrix factorization and spectral clustering. In Proc. SIAM Data Mining Conf,
pages 606-610, 2005.

Chris Ding, Xiaofeng He, and Hongyuan Zha. A specral method to separate
disconnected and nearly-disconnected web graph components. Proc 7th Int’l
Conf. on Knowledge Discovery and Data Mining, KDD 2001:275-280, 2001.

W. Donath and A. Hoffman. Algorithms for partitioning graphs and computer
logic based on eigenvectors of connection matrices. IBM Technical Disclosure
Bulletin, 15 n0.3:938-944, 1972.

W. Donath and A. Hoffman. Lower bounds for the partitioning of graphs. IBM
Journal of Research and Development, pages 420-425, 1973.

Art M. Duval and Victor Reiner. Perron-frobenius type results and discrete
versions of nodal domain theorems. Linear Algebra and its Applications, 294:259—
268, 1999.

Stanley J. Farlow. Partial Differential Equations for Scientists and Engineers.
Dover Publications, Inc., New York, 1982.

Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient graph-based image
segmentation. International Journal of Computer Vision, 59 no. 2:167-181, 2004.

Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical
Journal, 23 n0.2:298-305, 1973.

Miroslav Fiedler. A property of eigenvectors of nonnegative symmetric matrices
and its applications to graph theory. Czech. Math. J., 25, no. 100:619-633, 1975.

Miroslav Fiedler. Special Matrices and Their Applications in Numerical Mathe-
matics. Dover edition, Boston, 2008.

105

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Igor Fischer and Jan Poland. New methods for spectral clustering. Dalle Molle
Institute for Artificial Intelligence, 2004.

J. Friedman. Some geometric aspects of graphs and their eigenfunctions. Duke
Math J., 69(3):487-525, 1993.

G.M.L. Gladwell and H. Zhu. Courant’s nodal line theorem and its discrete
counterparts. Q. JI Mech. Appl. Math., 55:1-15, 2002.

Leo Grady. Graph analysis toolbox matlab code. http://eslab.bu.edu/
software/graphanalysis/, August 2003.

Leo Grady and Eric L. Schwartz. Isoperimetric graph partitioning for image
segmentation. IFEE Trans. on Pat. Anal. and Mach. Int, 28:469-475, 2006.

D.H. Griffel. Applied Functional Analysis. Halsted Press, New York, 1981.

Ji-Ming Guo. The algebraic connectivity of graphs under perturbation. Linear
Algebra and its Applications, 433(6):1148 — 1153, 2010.

U. Hetmaniuk and R. Lehoucq. Basis selection in lobpcg. J. Comput. Phys.,
218:324-332, 2006.

Desmond J. Higham, Gabriela Kalna, and Milla Kibble. Spectral clustering and
its use in bioinformatics. Journal of Computational and Applied Mathematics,
204:25-37, 2007.

Roger A. Horn and Charles R. Johnson. Matrixz Analysis. Cambridge University
Press, New York, NY, 2005.

D. Jerison and C. Kenig. Unique continuation and absence of positive eigenvalues
for schrodinger operators. Ann. Math., 121:159-268, 1999.

Claes Johnson. Numerical Solutions of Partial Differential Equations by the
Finite Element Method, chapter 24.

Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good, bad
and spectral. Journal of the ACM, 51 no. 3:497-515, 2004.

A. V. Knyazev, M. E. Argentati, [. Lashuk, and E. E. Ovtchinnikov. Block
locally optimal preconditioned eigenvalue xolvers (blopex) in hypre and petsc.
SIAM J. Sci. Comput, 29:2224-2239, 2007.

Andrew V. Knyazev. Preconditioned eigensolvers — an oxymoron? FElectron.
Trans. Numer. Anal., 7:104-123, 1998.

Andrew V. Knyazev. Toward the optimal preconditioned eigensolver: Locally
optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput,
23:517-541, 2001.

106

http://eslab.bu.edu/software/graphanalysis/
http://eslab.bu.edu/software/graphanalysis/

[44]

[45]

[51]

[52]

Andrew V. Knyazev and Merico E. Argentati. Implementation of a precondi-
tioned eigensolver using hypre. Technical Report UCD-CCM 220, Center for
Computational Mathematics, University of Colorado Denver, 2005.

Anna Matsekh, Alexei Skurikhin, Lakshman Prasad, and Edward Rosten. Nu-
merical aspects of spectral segmentation. In Applied Parallel and Scientific Com-
puting, volume LNCS 7133, pages 193-203, 2012.

Marina Meila and Jianbo Shi. Learning segmentation by random walks. In In
Advances in Neural Information Processing, pages 470-477. MIT Press, 2000.

Marina Meila and Jianbo Shi. A random walks view of spectral segmentation.

In Al and STATISTICS (AISTATS) 2001, 2001.

Boaz Nadler, Stphane Lafon, Ronald R. Coifman, and Ioannis G. Kevrekidis.
Diffusion maps, spectral clustering and eigenfunctions of fokker-planck operators.

In in Advances in Neural Information Processing Systems 18, pages 955-962.
MIT Press, 2005.

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Anal-
ysis and an algorithm. In ADVANCES IN NEURAL INFORMATION PRO-
CESSING SYSTEMS, pages 849-856. MIT Press, 2001.

Pekka Orponen and Satu Elisa Schaeffer. Local clustering of large graphs by
approximate fiedler vectors. In Proceedings of the Fourth International Workshop
on Efficient and Ezxperimental Algorithms (WEAO05), volume 3505 of Lecture
Notes in Computer Science, pages 524-533. Springer-Verlag GmbH, 2005.

Beresford N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1980.

Eitan Sharon, Meirav Galun, Dahlia Sharon, Ronen Basri, and Achi Brandt.
Hierarchy and adaptivity in segmenting visual scenes. Nature, 442(17):810-813,
2006.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEFE Trans-
actions on Pattern Analysis and Machine Intelligence, 22(8):888-905, August
2000.

Andreas Stathopoulos and James R. McCombs. PRIMME: PReconditioned Iter-
ative MultiMethod Eigensolver: Methods and software description. ACM Trans-
actions on Mathematical Software, 37(2):21:1-21:30, April 2010.

Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. J. ACM,
44(4):585-591, July 1997.

Ulrike von Luxburg. A tutorial on spectral clustering. Technical Report No.
Tr-149, Max Planck Institute for Biological Cybernetics, August 2006.

107

[57] Y. Weiss. Segmentation using eigenvectors: A unifying view. Internation Con-
ference on Computer Vision, pages 974-982, September 1999.

[58] Scott White and Padhraic Smyth. A spectral clustering approach to finding
communities in graphs. In Siam Conference on Data Mining, 2005.

[59] Lihi Zelnik-manor and Pietro Perona. Self-tuning spectral clustering. In Ad-
vances in Neural Information Processing Systems 17, pages 1601-1608. MIT
Press, 2004.

[60] Shu-BO Zhang, Song-Yu Zhou, Jian-GuO He, and Jian-Huang Lai. Phylogeny
inference based on spectral graph clustering. Journal of Computational Biology,
18 no. 4:627-637, 2011.

108

	Figures
	Tables
	Spectral Clustering and Image Segmentation
	Introduction
	Graph Laplacian
	Combinatorial Model
	Overview of Literature
	Vibrational Model
	Fiedler Theorems
	An Extension of Fiedlers Theorem
	Effect of mass matrix on segmentation
	Image Segmentation
	Edge Weights
	Spectral Clustering Algorithm
	Tuning the Edge Weight Parameters
	Eigenvalue Solvers
	Nodal Domain Theorems
	Summary

	MicroArrays
	Introduction
	What is a Microarray?
	How is Microarray data analyzed?
	Normalization of data
	Disconnected Graphs
	Successive BiClustering
	Weight construction
	"Toy" experiments
	Analysis of real microarray experiments
	The Software

	Blopex
	Introduction
	The Problem
	Current Software
	LOBPCG
	BLOPEX Software
	Structure
	Abstract Code
	Drivers and Interfaces

	The Google Source Site
	Environments BLOPEX Tested On
	Numerical Results
	Summary

	SpectralCluster Function
	SpectralClusterTest Driver
	Subroutines Used by SpectralCluster Funtion
	List of Genes by Cluster

	References

