A Time-Frequency Based Bivariate Synchrony Measure for Reducing Volume Conduction Effects in EEG

Marisel Villafañe-Delgado and Selin Aviyente, Ph. D. Department of Electrical and Computer Engineering Michigan State University

Motivation

 Functional connectivity (FC) is defined as the statistical dependence among two or more brain regions (Friston, 1994).

Problem:

- Volume conduction affects FC measures from electrophysiological techniques.
- Each sensor records the instantaneous
 linear superposition of multiple brain sources (Khadem and Hossein-Zadeh, 2014).
 - May lead to spurious detection of functional connections among channels.

http://psychophysiology.blogspot.com/2007_11_01_archive.html

Neuronal Origin of Electromagnetic Brain Signals

- Electromagnetic fields measured in the scalp result from coordinated cortical activity.
 - Electroencephalography (EEG): electric fields.
 - Magnetoencephalography (MEG): magnetic fields.

http://www.isr.umd.edu/Labs/CSSL/simo nlab/pubs/APAN2010.pdf

From Baillet et al., 2001

Volume Conduction

- Due to conductivity of the medium, electrical currents spread through different layers.
- Skull has high resistance: electrical signals spread laterally.

Volume currents for a thalamic dipole source (from Wolters et al., 2006).

Volume Conduction Reduction Approaches

- Source reconstruction: FC is based on brain sources reconstructed from scalp measurements.
 - No unique choice for a source model.
 - Total number of sources is unknown.
- Spatial filtering prior to the computation of functional connectivity.
- FC directly estimated from phase-lag methods.
 - Imaginary part of coherence (Nolte et al., 2004)
 - Phase lag index (PLI) (Stam et al., 2007)
 - Weighted phase lag index (WPLI) (Vinck et al., 2011)

Imaginary Part of Coherency (Nolte et al. 2004)

• Coherency:

$$C_{ij}(f) = \frac{S_{ij}(f)}{\sqrt{S_{ii}(f)S_{jj}(f)}}$$
, where $S_{ij}(f) = \langle x_i(f), x_j^*(f) \rangle$.

- Only the real part of coherency is affected by volume conduction.
 - Assume that signals at sensors *i* and *j* result from the linear combination of *K* sources.

$$x_i(f) = \sum_{k=1}^{K} a_{ik} s_k(f) \quad x_j(f) = \sum_{k=1}^{K} a_{ik} s_k(f)$$

Then,

$$S_{ij}(f) = \langle x_i(f), x_j^*(f) \rangle = \sum_k a_{ik} a_{jk} \langle s_k(f), s_k^*(f) \rangle = \sum_k a_{ik} a_{jk} |s_k(f)|^2$$

Phase-Lag Index (Stam et al. 2007)

- Measure of the asymmetry on the distribution of phase differences.
 - Constant nonzero phase lags between two electrophysiological signals cannot result from volume conduction caused by a strong source.

 $PLI = |\langle sign[\Delta \Phi_k] \rangle|,$

where
$$\Delta \Phi_k = \Phi_i - \Phi_j$$
.

Problem: discontinuity of PLI due to small perturbations which turn phase lags into leads and vice-versa.

Weighted Phase Lag Index (Vinck et al., 2011)

- Observed phase leads and lags are weighted by the magnitude of the imaginary component of the cross-spectrum.
 - Reduced sensitivity to uncorrelated noise sources
 - Increased statistical power to detect changes in phase synchronization.

$$WPLI = \frac{\left|E[Im(S_{ij})]\right|}{E[\left|Im(S_{ij})\right|]}$$

 WPLI does not separate the effects of amplitude and phase between two signals.

Modify WPLI as

$$WPLI(t,\omega) = \frac{\left|\left|\sin\left(\Phi_{1,2}^{k}(t,\omega)\right)\right|\right|}{\left|\left|\sin\left(\Phi_{1,2}^{k}(t,\omega)\right)\right|\right|}, \quad w$$

where $\langle \cdot \rangle$ denotes averaging over trials.

Reduced Interference Distribution (RID) Rihaczek time-frequency distribution

For a signal x_i , define $C_i(t, \omega)$ to be its complex RID-Rihaczek time-frequency distribution

$$C_{i}(t,\omega) = \iint exp\left(-\frac{(\theta\tau)^{2}}{\sigma}\right)exp\left(j\frac{\theta\tau}{\sigma}\right)A_{i}(\theta,\tau)e^{-j(\theta t+\tau\omega)}d\tau d\theta,$$

where $A_i(\theta, \tau)$ is the ambiguity function of x_i :

$$A_{i}(\theta,\tau) = \int x_{i}\left(u+\frac{\tau}{2}\right)x_{i}^{*}\left(u-\frac{\tau}{2}\right)e^{j\theta u}du.$$

• The time-varying phase of x_i is given as

$$\Phi_i(t,\omega) = \arg\left[\frac{C_i(t,\omega)}{|C_i(t,\omega)|}\right].$$

• The phase difference between two signals x_1 and x_2 is computed similarly as

$$\Phi_{1,2}(t,\omega) = \arg\left[\frac{C_1(t,\omega)}{|C_1(t,\omega)|}\frac{C_2^*(t,\omega)}{|C_2(t,\omega)|}\right]$$

Continuous Wavelet Transform (CWT)

For a signal x_i , define $W_i(t, \omega)$ to be its CWT given by

$$W_i(t,\omega) = \int_{-\infty}^{\infty} x(u) \Psi_{t,f}^*(u) du$$
$$\Psi_{t,f}(u) = \sqrt{f} e^{j2\pi f(u-t)} e^{-\frac{(u-t)^2}{2\sigma^2}}$$

where $\Psi_{t,f}(u)$ corresponds to a Gaussian window centered at time t with variance σ^2 modulated by a complex exponential at frequency f.

• The time-varying phase of the signal x_i is computed as

$$\Phi_i(t,\omega) = \arg\left[\frac{W_i(t,\omega)}{|W_i(t,\omega)|}\right].$$

The phase difference between two signals x₁ and x₂ is computed similarly as

$$\Phi_{1,2}(t,\omega) = \arg\left[\frac{W_1(t,\omega)}{|W_1(t,\omega)|}\frac{W_2^*(t,\omega)}{|W_2(t,\omega)|}\right].$$

Phase-Locking Value (PLV)

For two signals x_1 and x_2 the PLV is defined as

$$PLV_{1,2}(t,\omega) = \frac{1}{N} \left| \sum_{k=1}^{N} \exp\left(j\Phi_{1,2}^{k}(t,\omega)\right) \right|$$

where N corresponds to the total number of trials in the experiment and $\Phi_{1,2}^k$ is the phase difference between x_1 and x_2 for the k^{th} trial at time t and frequency ω .

Simulated EEG Data

- Based on the model provided by Cohen (2014):
 - > 2004 spatially distributed gray matter dipoles, simulated by Gaussian random variables, $\mu = 0$, $\sigma^2 = 0.6 \times 10^{-3}$.
 - I00 trials, Fs = 200 Hz
- Two active dipoles modeled as Gaussian tapered sine waves in additive noise:
 - medial prefrontal cortex (PFC)
 - medial occipital cortex (OCC)

 $x_{PFC}(t) = \eta_{PFC}(t) + \sin(2\pi 10t + \emptyset_1(t)) \times e^{\frac{-(t-0.6)^2}{0.1}}$

 $x_{OCC}(t) = \eta_{OCC}(t) + \left[\eta_{PFC}(t) + \sin\left(2\pi 10t + \phi_2(t)\right) \times e^{\frac{-(t-0.6)^2}{0.1}}\right] \times e^{\frac{-(t-0.6)^2}{0.1}}$

Results: EEG Simulated Data

- PLV and WPLI computed between Fz and the remaining 63 electrodes.
- Averaged over 9-11 Hz and 300-900 ms.

0.9 0.8 0.7 0.6

0.5 0.4

> 0.3 0.2

0.1

- Expected high synchrony between Fz and Pz.
- PLV: Both methods identify high synchrony between Fz and nearby electrodes.

EEG Data

- EEG data from a cognitive control-related error monitoring experiment.
 - Error-related negativity (ERN) potential: 25 75 ms after errors in a speeded reaction time tasks.
 - Linked to increased synchronization in the theta-band (4-8 Hz), in central and frontal regions compared to central and parietal regions (Cavanagh et. al., 2009).

Experiment:

- Letter version of the Eriksen flanker task.
- Identify a target (central) letter in a five-letter string: NNMNN
- ▶ 19 subjects.
- EEG signals recorded from 62 electrodes according to the 10/20 system.

Results: EEG Data

- Topographical plots for error-correct synchrony (RID-Rihaczek) differences.
- Electrode FCz as reference.
- PLV detects high synchrony between the medial frontal and medial central regions.
- WPLI synchrony results in moderately high synchrony between FCz and the medial frontal and central electrodes.
 - Synchrony is not strictly due to volume conduction or small phase differences.

Results: EEG Data

- ▶ Time-frequency synchrony maps between FCz and Fz electrodes.
- Low synchrony from WPLI for correct responses:

D

- High synchrony from PLV might be due to the influence of volume conduction.
- High WPLI synchrony is concentrated in the low theta band during the ERN interval.
 - Phase synchrony in the frontal-central region during error is not purely due to volume conduction.

Conclusions and Future Work

- A WPLI based on the RID-Rihaczek time-frequency distribution has been presented and compared to the WPLI based on the CWT.
 - Robust to volume conduction.
 - Better localized synchrony.
- As suggested by (Cohen 2014), in the case of real EEG data there are multiple factors in addition to volume conduction:
 - Noise
 - Non-stationarities
 - Small phase lags

Questions?