Adaptive algorithms for hypergraph learning

Aikaterini Chassapi, <u>Constantine Kotropoulos</u>, and Konstantinos Pliakos

Department of Informatics, Aristotle University of Thessaloniki, GREECE

 $chasapia@csd.auth.gr, \{costas, kpliakos\}@aiia.csd.auth.gr$

March 23rd, 2016

Onified hypergraph framework

- Onified hypergraph framework
- O Hyperedge weight estimation scheme

- Introduction
- Onified hypergraph framework
- O Hyperedge weight estimation scheme
- Adaptive hyperedge weight estimation

- Onified hypergraph framework
- O Hyperedge weight estimation scheme
- Adaptive hyperedge weight estimation
- Experimental results

- Onified hypergraph framework
- O Hyperedge weight estimation scheme
- Adaptive hyperedge weight estimation
- Experimental results
- Onclusions

• The amount of images uploaded nowadays to the web is overwhelmingly huge and thus, the need for efficient tagging methods has risen.

- The amount of images uploaded nowadays to the web is overwhelmingly huge and thus, the need for efficient tagging methods has risen.
- Social media sharing platforms enable image content as well as context information (e.g., user friendships, geo-tags assigned to images) to be jointly analyzed in order to achieve accurate image annotation or successful image recommendation.

- The amount of images uploaded nowadays to the web is overwhelmingly huge and thus, the need for efficient tagging methods has risen.
- Social media sharing platforms enable image content as well as context information (e.g., user friendships, geo-tags assigned to images) to be jointly analyzed in order to achieve accurate image annotation or successful image recommendation.
- The context information is expressed in terms of high-order relations.

- The amount of images uploaded nowadays to the web is overwhelmingly huge and thus, the need for efficient tagging methods has risen.
- Social media sharing platforms enable image content as well as context information (e.g., user friendships, geo-tags assigned to images) to be jointly analyzed in order to achieve accurate image annotation or successful image recommendation.
- The context information is expressed in terms of high-order relations.
- Hypergraphs can model such high-order relations between their vertices by hyperedges whose influence can be assessed by properly estimating their weights.

What is the paper about?

- An efficient adaptive hypergraph weight estimation scheme is proposed for image tagging by
 - enforcing both equality and inequality constraints during hypergraph learning

What is the paper about?

- An efficient adaptive hypergraph weight estimation scheme is proposed for image tagging by
 - enforcing both equality and inequality constraints during hypergraph learning
 - and employing an efficient adaptation step using the Armijo rule.

^ahttp://www.flickr.com

What is the paper about?

- An efficient adaptive hypergraph weight estimation scheme is proposed for image tagging by
 - enforcing both equality and inequality constraints during hypergraph learning
 - 2 and employing an efficient adaptation step using the Armijo rule.
- Experiments conducted on a dataset crawled from *Flickr^a* demonstrate the superior performance of the proposed approach compared to the state-of-the-art.

^ahttp://www.flickr.com

Hypergraphs consist of a set of:

- vertices (v) made by concatenating different kind of objects.
- hyperedges (e), linking these vertices.

Hypergraphs consist of a set of:

- vertices (v) made by concatenating different kind of objects.
- hyperedges (e), linking these vertices.

Why not simple graphs?

- Simple graphs model only pairwise relations between the items.
- Hyperedges capture high-order relations. Thus, triplet relations among different types of objects (i.e., users-images-tags or users-images-geotags) can be represented.

Why not simple graphs?

- Simple graphs model only pairwise relations between the items.
- Hyperedges capture high-order relations. Thus, triplet relations among different types of objects (i.e., users-images-tags or users-images-geotags) can be represented.

Simple graph cannot answer who has tagged what.

Construction of the Unified Hypergraph

- Different relations correspond to different types of hyperedges.
- 6 types of hyperedges (E⁽¹⁾, E⁽²⁾, E⁽³⁾, E⁽⁴⁾, E⁽⁵⁾, E⁽⁶⁾), linking 5 types of objects (images, users, user groups, geo-tags, and tags).

Table : The structure of the hypergraph incidence matrix ${f H}$ and its sub-matrices.

$E^{(1)}$	$E^{(2)}$	$E^{(3)}$	$E^{(4)}$	$E^{(5)}$	$E^{(6)}$
0	0	ImE ⁽³⁾	ImE ⁽⁴⁾	ImE ⁽⁵⁾	ImE ⁽⁶⁾
$UE^{(1)}$	$UE^{(2)}$	$UE^{(3)}$	$UE^{(4)}$	$UE^{(5)}$	0
0	GrE ⁽²⁾	0	0	0	0
0	0	0	GeoE ⁽⁴⁾	0	0
0	0	0	0	<i>TaE</i> ⁽⁵⁾	0

Unified Hypergraph Framework

$E^{(1)}$	$E^{(2)}$	E ⁽³⁾	$E^{(4)}$	$E^{(5)}$	$E^{(6)}$
0	0	ImE ⁽³⁾	ImE ⁽⁴⁾	ImE ⁽⁵⁾	ImE ⁽⁶⁾
$UE^{(1)}$	$UE^{(2)}$	$UE^{(3)}$	$UE^{(4)}$	$UE^{(5)}$	0
0	GrE ⁽²⁾	0	0	0	0
0	0	0	GeoE ⁽⁴⁾	0	0
0	0	0	0	<i>TaE</i> ⁽⁵⁾	0

Different types of hyperedges:

- $E^{(1)}$: represents a pairwise friendship relation between users.
- $E^{(2)}$: represents a group of users.
- $E^{(3)}$: represents a user-image possession relation.
- $E^{(4)}$: contains an image, its owner, and its geo-location.
- *E*⁽⁵⁾: contains a triplet of an image, a user, and a tag, representing a tagging relation.
- *E*⁽⁶⁾: contains pairs of vertices, which represent two visually similar images.

Notations

- G(V, E, w) a hypergraph of a set of vertices V and hyperedges E, with a weight function $w : E \to \mathbb{R}$ assigned.
- D_u = diag(Hw) the vertex degree matrix, D_e = diag(1^TH) the hyperedge degree matrix, the weight matrix W = diag(w) containing the hyperedge weights w_i, ||.||₂ the ℓ₂ norm of a vector and I the identity matrix.
- \bullet y and $f \in \mathbb{R}^{|V|}$ the query and ranking vectors, respectively.
- ϑ a regularizing parameter.
- $\mathbf{L} = \mathbf{I} \mathbf{A}$ the positive semi-definite hypergraph Laplacian matrix, where $\mathbf{A} = \mathbf{D}_u^{-1/2} \mathbf{H} \mathbf{W} \mathbf{D}_e^{-1} \mathbf{H}^T \mathbf{D}_u^{-1/2}$.

Last year ICASSP optimization problem

- In a hypergraph clustering problem, one seeks to minimize Ω(f) = f^TLf requiring all vertices with the same value in f to be strongly connected^a.
- The l₂ regularization norm between the ranking vector **f** and the query vector **y** could be included to address a ranking problem^b.
- Hypergraph ranking was enhanced by optimizing the hyperedge weights w = (w₁, w₂, ..., w_n)^T so that^c:

$$\underset{\mathbf{f},\mathbf{w}}{\operatorname{argmin}} \left\{ \Omega(\mathbf{f}) + \vartheta ||\mathbf{f} - \mathbf{y}||^2 + \kappa ||\mathbf{w}||^2 \right\} \qquad \text{ s.t. } \mathbf{1}_n^T \mathbf{w} = 1.$$
(1)

^aS. Agarwal, K. Branson, and S. Belongie, Higher order learning with graphs, in Proc. 23rd Int. Conf. Machine Learning, 2006, pp. 17-24.

^b J. Bu, S. Tan, C. Chen, C. Wang, H. Wu, Z. Lijun, and X. He, Music recommendation by unified hypergraph: combining social media information and music content, in Proc. ACM Conf. Multimedia, 2010, pp. 391-400.

^CK. Pliakos and C. Kotropoulos, "Weight estimation in hypergraph learning," in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, 2015, pp. 1161-1165.

ICASSP 2016 optimization problem

$$\underset{\mathbf{f},\mathbf{w}}{\operatorname{argmin}} \left\{ \Psi(\mathbf{f}) + +\kappa ||\mathbf{w}||^2 \right\} \qquad \text{ s.t. } \mathbf{1}_n^{\mathcal{T}} \mathbf{w} = 1 \text{ and } \mathbf{w} \ge \mathbf{0} \qquad (2)$$

where $\Psi(\mathbf{f}) = \mathbf{f}^T \mathbf{L} \mathbf{f} + \vartheta ||\mathbf{f} - \mathbf{y}||^2$ and κ is a positive regularization parameter.

ICASSP 2016 optimization problem

$$\underset{\mathbf{f},\mathbf{w}}{\operatorname{argmin}} \left\{ \Psi(\mathbf{f}) + +\kappa ||\mathbf{w}||^2 \right\} \qquad \text{ s.t. } \mathbf{1}_n^T \mathbf{w} = 1 \text{ and } \mathbf{w} \ge \mathbf{0} \qquad (2)$$

where $\Psi(\mathbf{f}) = \mathbf{f}^T \mathbf{L} \mathbf{f} + \vartheta ||\mathbf{f} - \mathbf{y}||^2$ and κ is a positive regularization parameter.

Optimization wrt. \mathbf{f} when \mathbf{w} is fixed

Closed-form solution^a:

$$\mathbf{f}^* = \frac{\vartheta}{1+\vartheta} \left(\mathbf{I} - \frac{1}{1+\vartheta} \mathbf{A} \right)^{-1} \mathbf{y}.$$
(3)

^aD. Zhou, J. Huang, and B. Schölkopf, "Learning with hypergraphs: Clustering, classification, and embedding," in *Advances in Neural Information Processing Systems*, 2007, vol. 19, pp. 1601-1608.

Optimization wrt. \boldsymbol{f} when \boldsymbol{w} is fixed

Closed-form solution^a:

$$\mathbf{f}^* = \frac{\vartheta}{1+\vartheta} \left(\mathbf{I} - \frac{1}{1+\vartheta} \mathbf{A} \right)^{-1} \mathbf{y}.$$
 (3)

^aD. Zhou, J. Huang, and B. Schölkopf, "Learning with hypergraphs: Clustering, classification, and embedding," in *Advances in Neural Information Processing Systems*, 2007, vol. 19, pp. 1601-1608.

Optimization wrt. \mathbf{w} when \mathbf{f} is fixed

$$\underset{\mathbf{w}}{\operatorname{argmin}} P(\mathbf{w}) \qquad \text{s.t. } \mathbf{1}_{n}^{T} \mathbf{w} = 1 \text{ and } \mathbf{w} \ge \mathbf{0}. \tag{4}$$
where $P(\mathbf{w}) = \mathbf{f}^{T} \mathbf{L} \mathbf{f} + \kappa ||\mathbf{w}||^{2}.$

• The new optimization problem (4) is solved by employing gradient descent.

- The new optimization problem (4) is solved by employing gradient descent.
- Lagrangian of the optimization problem:

$$Q = P + \sum_{j=1}^{\wp} c_j \ G_j, \tag{5}$$

where c_j , $j = 1, 2, ..., \wp$ are the Lagrange multipliers associated to the \wp active constraints G_j defined as

$$G_j: \begin{cases} \mathbf{1}_n^T \mathbf{w} - 1 = 0 & \text{for } j = 1\\ w_{\nu_j - 1} = 0 & \text{for } j > 1. \end{cases}$$
(6)

- The new optimization problem (4) is solved by employing gradient descent.
- Lagrangian of the optimization problem:

$$Q = P + \sum_{j=1}^{\wp} c_j \ G_j, \tag{5}$$

where c_j , $j = 1, 2, ..., \wp$ are the Lagrange multipliers associated to the \wp active constraints G_j defined as

$$G_j: \begin{cases} \mathbf{1}_n^T \mathbf{w} - 1 = 0 & \text{for } j = 1 \\ w_{\nu_j - 1} = 0 & \text{for } j > 1. \end{cases}$$
(6)

• with G_1 being an equality constraint and for j > 1: $2 \le \nu_j \le n + 1$, such that $\nu_j - 1 \in [1, n]$ being an index of a hyperedge weight.

• The Kuhn-Tucker theorem requires the Lagrange multipliers to be determined by demanding that ∇Q to be orthogonal to $\nabla G_j = \frac{\partial G_j}{\partial \mathbf{w}}$, i.e.,

$$\nabla G_j^T \nabla Q = 0, \quad j = 1, 2, \dots, \wp \tag{7}$$

• The Kuhn-Tucker theorem requires the Lagrange multipliers to be determined by demanding that ∇Q to be orthogonal to $\nabla G_j = \frac{\partial G_j}{\partial \mathbf{w}}$, i.e.,

$$\nabla G_j^T \nabla Q = 0, \quad j = 1, 2, \dots, \wp \tag{7}$$

• It can be shown that:

$$abla Q =
abla P + \sum_{j=1}^{\wp} c_j \,
abla G_j =
abla P + \mathbf{\Gamma} \, \mathbf{c}$$
(8)

where $\mathbf{c} \in \mathbb{R}^{\wp}$ and $\mathbf{\Gamma}$ is a matrix of size $n \times \wp$ having a special structure.

Structure of $\mathbf{\Gamma} = [\nabla G_1 | \nabla G_2 | \cdots | \nabla G_{\wp}]$

• its first column is $\mathbf{1}_n$;

Structure of $\mathbf{\Gamma} = [\nabla G_1 | \nabla G_2 | \cdots | \nabla G_{\wp}]$

- its first column is 1_n;
- The remaining columns have 1 at the row $u_j 1$ and zero otherwise.

Solution of (7) wrt. c

Structure of $\mathbf{\Gamma} = [\nabla G_1 | \nabla G_2 | \cdots | \nabla G_{\wp}]$

- its first column is 1_n;
- The remaining columns have 1 at the row $u_j 1$ and zero otherwise.

Solution of (7) wrt. c

•
$$\mathbf{c} = -(\mathbf{\Gamma}^T \mathbf{\Gamma})^{-1} \mathbf{\Gamma}^T \nabla P$$
.

Structure of $\mathbf{\Gamma} = [\nabla G_1 | \nabla G_2 | \cdots | \nabla G_{\wp}]$

- its first column is 1_n;
- The remaining columns have 1 at the row $u_j 1$ and zero otherwise.

Solution of (7) wrt. c

•
$$\mathbf{c} = -(\mathbf{\Gamma}^T \mathbf{\Gamma})^{-1} \mathbf{\Gamma}^T \nabla P.$$

• Let $S_{\text{inactive}} = \sum_{\substack{i=1 \\ w_i \neq 0}}^{n} (\nabla P)_i$, where $(\nabla P)_i$ denotes the *i*-th element of ∇P .

Structure of $\mathbf{\Gamma} = [\nabla G_1 | \nabla G_2 | \cdots | \nabla G_{\wp}]$

- its first column is 1_n;
- The remaining columns have 1 at the row $u_j 1$ and zero otherwise.

Solution of (7) wrt. c

•
$$\mathbf{c} = -(\mathbf{\Gamma}^T \mathbf{\Gamma})^{-1} \mathbf{\Gamma}^T \nabla P.$$

• Let $S_{\text{inactive}} = \sum_{\substack{i=1 \\ w_i \neq 0}}^{n} (\nabla P)_i$, where $(\nabla P)_i$ denotes the *i*-th element of ∇P .

$$\mathbf{c} = \begin{bmatrix} \frac{-S_{\text{inactive}}}{n-\wp+1} \\ \frac{S_{\text{inactive}}}{n-\wp+1} - (\nabla P)_{\nu_2-1} \\ \vdots \\ \frac{S_{\text{inactive}}}{n-\wp+1} - (\nabla P)_{\nu_{\wp}-1} \end{bmatrix}.$$
(9)

i-th element of ∇Q

$$(\nabla Q)_i = \left\{ egin{array}{cc} 0 & i: w_i = 0 \ (\nabla P)_i - rac{S_{ ext{inactive}}}{n-\wp+1} & ext{otherwise}, \end{array}
ight.$$

where $(\nabla P)_i$ is given by ^{*a*}:

$$(\nabla P)_i = -\mathbf{f}^T \left(D_e^{-1}(i,i) \mathbf{\Lambda}_i \mathbf{\Lambda}_i^T - \mathbf{\Xi}_i \right) \mathbf{f} + 2\kappa w_i \tag{11}$$

with

• $\Lambda_i \in \mathbf{R}^{|V|}$ being the *i*-th column of $\Lambda = \mathbf{D}_v^{-1/2} \mathbf{H}$;

(10)

^aK. Pliakos and C. Kotropoulos, "Weight estimation in hypergraph learning," in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, 2015, pp. 1161-1165.

i-th element of ∇Q

$$(\nabla Q)_{i} = \begin{cases} 0 & i : w_{i} = 0\\ (\nabla P)_{i} - \frac{S_{\text{inactive}}}{n - \wp + 1} & \text{otherwise,} \end{cases}$$
(10)

where $(\nabla P)_i$ is given by ^{*a*}:

$$(\nabla P)_i = -\mathbf{f}^T \left(D_e^{-1}(i,i) \mathbf{\Lambda}_i \mathbf{\Lambda}_i^T - \mathbf{\Xi}_i \right) \mathbf{f} + 2\kappa w_i$$
(11)

with

^aK. Pliakos and C. Kotropoulos, "Weight estimation in hypergraph learning," in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, 2015, pp. 1161-1165.

i-th element of ∇Q

$$(\nabla Q)_{i} = \begin{cases} 0 & i : w_{i} = 0\\ (\nabla P)_{i} - \frac{S_{\text{inactive}}}{n - \wp + 1} & \text{otherwise,} \end{cases}$$
(10)

where $(\nabla P)_i$ is given by ^{*a*}:

$$(\nabla P)_i = -\mathbf{f}^T \left(D_e^{-1}(i,i) \mathbf{\Lambda}_i \mathbf{\Lambda}_i^T - \mathbf{\Xi}_i \right) \mathbf{f} + 2\kappa w_i$$
(11)

with

- $\Lambda_i \in \mathbf{R}^{|V|}$ being the *i*-th column of $\Lambda = \mathbf{D}_v^{-1/2} \mathbf{H}$;
- $\Xi_i = \operatorname{diag}(\Lambda_i) D_v^{-1/2} A$ being a a $|V| \times |V|$ symmetric matrix;
- diag(Λ_i) being a |V| × |V| diagonal matrix having Λ_i in its main diagonal.

^aK. Pliakos and C. Kotropoulos, "Weight estimation in hypergraph learning," in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, 2015, pp. 1161-1165.

Gradient descent

 $\mathbf{w}^{\text{new}} = \mathbf{w}^{\text{old}} - \mu \nabla Q$. That is,

$$w_i^{\text{new}} = \begin{cases} 0 & \text{if } w_i^{\text{old}} = 0 \\ w_i^{\text{old}} - \mu(\nabla P)_i + \mu \frac{S_{\text{inactive}}}{n - \wp + 1} & \text{otherwise.} \end{cases}$$

Flowchart

 An arbitrary fixed small adaptation step μ can be used as in the classical gradient descent^a.

^aD. P. Bertsekas, *Nonlinear Programming*, Athena Scientific, 1995.

^bJ. Nocedal and S. Wright, *Numerical Optimization*, Springer, 2006.

- An arbitrary fixed small adaptation step μ can be used as in the classical gradient descent^a.
- To achieve a sufficient decrease, the Armijo rule is employed to properly select the adaptation step μ.

^aD. P. Bertsekas, Nonlinear Programming, Athena Scientific, 1995.

^bJ. Nocedal and S. Wright, *Numerical Optimization*, Springer, 2006.

- An arbitrary fixed small adaptation step μ can be used as in the classical gradient descent^a.
- To achieve a sufficient decrease, the Armijo rule is employed to properly select the adaptation step μ.
- At iteration k: $Q(\mathbf{w}(k)) = \mathbf{f}^T \mathbf{L} \mathbf{f} + \kappa ||\mathbf{w}(k)||^2 + \sum_{j=1}^{\wp} c_j G_j$

^aD. P. Bertsekas, *Nonlinear Programming*, Athena Scientific, 1995.

^bJ. Nocedal and S. Wright, *Numerical Optimization*, Springer, 2006.

- An arbitrary fixed small adaptation step μ can be used as in the classical gradient descent^a.
- To achieve a sufficient decrease, the Armijo rule is employed to properly select the adaptation step μ.
- At iteration k: $Q(\mathbf{w}(k)) = \mathbf{f}^T \mathbf{L} \mathbf{f} + \kappa ||\mathbf{w}(k)||^2 + \sum_{j=1}^{\wp} c_j G_j$
- Adaptation step: $\mu_k = \varrho \ \mu_{k-1}$, for $\varrho \in (0,1]$ until the condition

$$Q(\mathbf{w}(k) + \mu_k \ \mathbf{d}(k)) \leq Q(\mathbf{w}(k)) + \eta_1 \ \mu_k
abla Q^{\mathcal{T}}(\mathbf{w}(k)) \ \mathbf{d}(k)$$

for some $\eta_1 \in (0,1)$ (e.g., $\eta_1 = 10^{-4}$) with $\mathbf{d}(k) = -\nabla Q(\mathbf{w}(k))$ being the search direction in the steepest descent method^b.

^aD. P. Bertsekas, *Nonlinear Programming*, Athena Scientific, 1995.

^bJ. Nocedal and S. Wright, *Numerical Optimization*, Springer, 2006.

Table : Dataset objects, notations, and counts.

Object	Notation	Count	
Images	Im	1292	
Users	U	440	
User Groups	Gr	1644	
Geo-tags	Geo	125	
Tags	Ta	2366	

Evaluation metrics

- Precision is defined as the number of correctly recommended tags divided by the number of all recommended tags.
- Recall is defined as the number of correctly recommended tags divided by the number of all tags the user has actually set.
- The F₁ measure is the weighted harmonic mean of precision and recall, which measures the effectiveness of tagging when treating precision and recall as equally important, i.e.,

$$F_1 = 2 rac{Precision \cdot Recall}{Precision + Recall}.$$

Experimental results

Protocol

- Test set containing the 25% of the tags
- Training set containing the remaining 75%.
- Curves were obtained by averaging the Recall-Precision curves over 1186 images with at least 4 tags.
- To calculate the recall and precision, the 15 top ranked tags are being recommended to any test image.

Figure : The structure of query and result ranking vectors.

Algorithms compared

- ITH: Image Tagging on Hypergraph^a
- ITH-HWE: Image tagging on Hypergraph with Hyperedge Weight Estimation (ICASSP 2015 algorithm)^b
- ITH-HWEG: Adaptive hypergraph weight estimation with gradient descent and fixed adaptation step (ICASSP 2016 1st proposal)
- ITH-HWEA Adaptive hypergraph weight estimation with gradient descent and Armijo rule (ICASSP 2016 2nd proposal)

^a J. Bu, S. Tan, C. Chen, C. Wang, H. Wu, Z. Lijun, and X. He, Music recommendation by unified hypergraph: combining social media information and music content, in Proc. ACM Conf. Multimedia, 2010, pp. 391-400.

^bK. Pliakos and C. Kotropoulos, "Weight estimation in hypergraph learning," in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, 2015, pp. 1161-1165.

Averaged recall-precision curves with initial hyperedge weights $\frac{1}{n}$

F_1 measure at various ranking positions when the hyperedge weights are initialized as $\frac{1}{n}$

Initial weight set to $w(0) - \frac{1}{2}1$	<i>F</i> ₁ @1	<i>F</i> ₁ @2	<i>F</i> ₁ @5	<i>F</i> ₁ @10
$\mathbf{W}(0) = \frac{1}{n}$				
ITH	0.307	0.444	0.520	0.440
ITH-HWE	0.349	0.556	0.675	0.517
ITH-WHEG	0.317	0.458	0.541	0.445
ITH-HWEA	0.420	0.676	0.720	0.560

Experimental results

Averaged recall-precision curves when the initial hyperedge weights are randomly initialized.

ICASSP 2016

F_1 measure for ITH-HWEG and ITH-HWEA curves when the initial hyperedge weights are randomly initialized.

Random initial weights	<i>F</i> ₁ @1	<i>F</i> ₁ @2	<i>F</i> ₁ @5	<i>F</i> ₁ @10
ITH-WHEG	0.425	0.682	0.753	0.558
ITH-HWEA	0.431	0.695	0.760	0.560

100 important weights for 3 images

Histograms of hyperedge activations

• All the hyperedges do not hold the same importance as others. Some of these hyperdges are more informative and thus should have higher impact on the learning procedure.

- All the hyperedges do not hold the same importance as others. Some of these hyperdges are more informative and thus should have higher impact on the learning procedure.
- Both the proposed methods ITH-HWEG and ITH-HWEA outperform the baseline techniques.

- All the hyperedges do not hold the same importance as others. Some of these hyperdges are more informative and thus should have higher impact on the learning procedure.
- Both the proposed methods ITH-HWEG and ITH-HWEA outperform the baseline techniques.
- The most effective tagging method employs randomly initialized hyperedge weights and the Armijo rule for determining the adaptation step.

- All the hyperedges do not hold the same importance as others. Some of these hyperdges are more informative and thus should have higher impact on the learning procedure.
- Both the proposed methods ITH-HWEG and ITH-HWEA outperform the baseline techniques.
- The most effective tagging method employs randomly initialized hyperedge weights and the Armijo rule for determining the adaptation step.
- The aforementioned choices reduce significantly the time needed for algorithm convergence.

This research has been co-financed by the European Union (European Regional Development Fund - ERDF) and Greek national funds through the Operation Program "Competitiveness-Cooperation 2011" - Research Funding Program: 11SYN-10-1730-ATLAS.

Ministry of Education and Religious Affairs GSRT - Management and Implementation Agency for RTD and Innovation Activities This research has been co-financed by the European Union (European Regional Development Fund - ERDF) and Greek national funds through the Operation Program "Competitiveness-Cooperation 2011" - Research Funding Program: 11SYN-10-1730-ATLAS.

Ministry of Education and Religious Affairs GSRT- Management and Implementation Agency for RTD and Innovation Activities

Questions?

Thank You! Any Questions?