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Introduction

Motivation

The amount of images uploaded nowadays to the web is
overwhelmingly huge and thus, the need for efficient tagging methods
has risen.

Social media sharing platforms enable image content as well as
context information (e.g., user friendships, geo-tags assigned to
images) to be jointly analyzed in order to achieve accurate image
annotation or successful image recommendation.

The context information is expressed in terms of high-order relations.

Hypergraphs can model such high-order relations between their
vertices by hyperedges whose influence can be assessed by properly
estimating their weights.
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Introduction

What is the paper about?

An efficient adaptive hypergraph weight estimation scheme is
proposed for image tagging by

1 enforcing both equality and inequality constraints during hypergraph
learning

2 and employing an efficient adaptation step using the Armijo rule.

Experiments conducted on a dataset crawled from Flickra

demonstrate the superior performance of the proposed approach
compared to the state-of-the-art.

ahttp://www.flickr.com
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Unified Hypergraph Framework

Hypergraphs consist of a set of:

vertices (v) made by concatenating different kind of objects.

hyperedges (e), linking these vertices.

v1a, v1b, v1c : images 

v2a, v2b : users 

v3 : groups 

v4 : geo-tags 

v5 : tags  

e1: friendship relations 

e2: social group relations 

e3: possession relations 

e4: geo-tag relations 

e5: tag relations 

e6: image visual relations 
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Unified Hypergraph Framework

Why not simple graphs?

Simple graphs model only pairwise relations between the items.

Hyperedges capture high-order relations. Thus, triplet relations
among different types of objects (i.e., users-images-tags or
users-images-geotags) can be represented.

tag 

Simple graph cannot answer who has tagged what.
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Unified Hypergraph Framework

Construction of the Unified Hypergraph

Different relations correspond to different types of hyperedges.

6 types of hyperedges (E (1),E (2),E (3),E (4),E (5),E (6)), linking 5
types of objects (images, users, user groups, geo-tags, and tags).

Table : The structure of the hypergraph incidence matrix H and its sub-matrices.

E (1) E (2) E (3) E (4) E (5) E (6)

0 0 ImE (3) ImE (4) ImE (5) ImE (6)

UE (1) UE (2) UE (3) UE (4) UE (5) 0

0 GrE (2) 0 0 0 0

0 0 0 GeoE (4) 0 0

0 0 0 0 TaE (5) 0
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UE (1) UE (2) UE (3) UE (4) UE (5) 0

0 GrE (2) 0 0 0 0

0 0 0 GeoE (4) 0 0

0 0 0 0 TaE (5) 0

Different types of hyperedges:

E (1): represents a pairwise friendship relation between users.

E (2): represents a group of users.

E (3): represents a user-image possession relation.

E (4): contains an image, its owner, and its geo-location.

E (5): contains a triplet of an image, a user, and a tag, representing a
tagging relation.

E (6): contains pairs of vertices, which represent two visually similar
images.
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Hyperedge weight estimation scheme

Notations

G (V ,E ,w) a hypergraph of a set of vertices V and hyperedges E ,
with a weight function w : E → R assigned.

Du = diag(Hw) the vertex degree matrix, De = diag(1TH) the
hyperedge degree matrix, the weight matrix W = diag(w) containing
the hyperedge weights wi , ‖.‖2 the `2 norm of a vector and I the
identity matrix.

y and f ∈ R|V | the query and ranking vectors, respectively.

ϑ a regularizing parameter.

L = I− A the positive semi-definite hypergraph Laplacian matrix,

where A = D
−1/2
u HWD−1

e HTD
−1/2
u .
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Hyperedge weight estimation scheme

Last year ICASSP optimization problem

In a hypergraph clustering problem, one seeks to minimize
Ω(f) = fTLf requiring all vertices with the same value in f to be
strongly connecteda.

The `2 regularization norm between the ranking vector f and the
query vector y could be included to address a ranking problemb.

Hypergraph ranking was enhanced by optimizing the hyperedge
weights w = (w1,w2, · · · ,wn)T so thatc:

argmin
f,w

{
Ω(f) + ϑ ||f − y||2 + κ||w||2

}
s.t. 1T

n w = 1. (1)

a
S. Agarwal, K. Branson, and S. Belongie, Higher order learning with graphs, in Proc. 23rd Int. Conf.

Machine Learning, 2006, pp. 17-24.
b

J. Bu, S. Tan, C. Chen, C. Wang, H. Wu, Z. Lijun, and X. He, Music recommendation by unified hypergraph:
combining social media information and music content, in Proc. ACM Conf. Multimedia, 2010, pp. 391-400.

c
K. Pliakos and C. Kotropoulos, “Weight estimation in hypergraph learning,” in Proc. IEEE Int. Conf.

Acoustics, Speech, and Signal Processing, 2015, pp. 1161-1165.
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Adaptive hyperedge weight estimation

ICASSP 2016 optimization problem

argmin
f,w

{
Ψ(f) + +κ||w||2

}
s.t. 1T

n w = 1 and w ≥ 0 (2)

where Ψ(f) = fT L f + ϑ||f − y||2 and κ is a positive regularization
parameter.

Alternating optimization

Hypergraph Learning 

(fixed weights)  
f 

Hyperedge Weight 

Learning 

w 
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Adaptive hyperedge weight estimation

Optimization wrt. f when w is fixed

Closed-form solutiona:

f∗ =
ϑ

1 + ϑ

(
I− 1

1 + ϑ
A
)−1

y. (3)

a
D. Zhou, J. Huang, and B. Schölkopf, “Learning with hypergraphs: Clustering, classification, and

embedding,” in Advances in Neural Information Processing Systems, 2007, vol. 19, pp. 1601-1608.

Optimization wrt. w when f is fixed

argmin
w

P(w) s.t. 1T
n w = 1 and w ≥ 0. (4)

where P(w) = fTLf + κ||w||2.
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Adaptive hyperedge weight estimation

The new optimization problem (4) is solved by employing gradient
descent.

Lagrangian of the optimization problem:

Q = P +

℘∑
j=1

cj Gj , (5)

where cj , j = 1, 2, . . . , ℘ are the Lagrange multipliers associated to
the ℘ active constraints Gj defined as

Gj :

{
1T
n w − 1 = 0 for j = 1

wνj−1 = 0 for j > 1.
(6)

with G1 being an equality constraint and for j > 1: 2 ≤ νj ≤ n + 1,
such that νj − 1 ∈ [1, n] being an index of a hyperedge weight.
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Adaptive hyperedge weight estimation

The Kuhn-Tucker theorem requires the Lagrange multipliers to be

determined by demanding that ∇Q to be orthogonal to ∇Gj =
∂Gj

∂w ,
i.e.,

∇GT
j ∇Q = 0, j = 1, 2, . . . , ℘ (7)

It can be shown that:

∇Q = ∇P +

℘∑
j=1

cj ∇Gj = ∇P + Γ c (8)

where c ∈ R℘ and Γ is a matrix of size n × ℘ having a special
structure.
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Adaptive hyperedge weight estimation

Structure of Γ = [∇G1|∇G2| · · · |∇G℘]

its first column is 1n;

The remaining columns have 1 at the row νj − 1 and zero otherwise.

Solution of (7) wrt. c

c = −(ΓTΓ)−1ΓT∇P.

Let Sinactive =
∑n

i=1
wi 6=0

(∇P)i , where (∇P)i denotes the i-th element of

∇P.

c =


−Sinactive
n−℘+1

Sinactive
n−℘+1 − (∇P)ν2−1

...
Sinactive
n−℘+1 − (∇P)ν℘−1

 . (9)
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Adaptive hyperdge weight updating

i -th element of ∇Q

(∇Q)i =

{
0 i : wi = 0

(∇P)i − Sinactive
n−℘+1 otherwise,

(10)

where (∇P)i is given by a:

(∇P)i = −fT
(
D−1
e (i , i)ΛiΛ

T
i − Ξi

)
f + 2κwi (11)

with

Λi ∈ R|V | being the i-th column of Λ = D
−1/2
v H;

Ξi = diag(Λi )D
−1/2
v A being a a |V | × |V | symmetric matrix;

diag(Λi ) being a |V | × |V | diagonal matrix having Λi in its main
diagonal.

a
K. Pliakos and C. Kotropoulos, “Weight estimation in hypergraph learning,” in Proc. IEEE Int. Conf.

Acoustics, Speech, and Signal Processing, 2015, pp. 1161-1165.
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Adaptive hyperdge weight updating

Gradient descent

wnew = wold − µ∇Q. That is,

wnew
i =

{
0 if wold

i = 0

wold
i − µ(∇P)i + µSinactive

n−℘+1 otherwise.
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Adaptive hyperdge weight updating

Flowchart
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Adaptive hyperdge weight updating

Armijo Rule

An arbitrary fixed small adaptation step µ can be used as in the
classical gradient descenta.

To achieve a sufficient decrease, the Armijo rule is employed to
properly select the adaptation step µ.

At iteration k : Q(w(k)) = fTLf + κ||w(k)||2 +
∑℘

j=1 cj Gj

Adaptation step: µk = % µk−1, for % ∈ (0, 1] until the condition

Q(w(k) + µk d(k)) ≤ Q(w(k)) + η1 µk∇QT (w(k)) d(k)

for some η1 ∈ (0, 1) (e.g., η1 = 10−4) with d(k) = −∇Q(w(k))
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Experimental Results

Table : Dataset objects, notations, and counts.

Object Notation Count

Images Im 1292
Users U 440
User Groups Gr 1644
Geo-tags Geo 125
Tags Ta 2366
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Experimental results

Evaluation metrics

Precision is defined as the number of correctly recommended tags
divided by the number of all recommended tags.

Recall is defined as the number of correctly recommended tags
divided by the number of all tags the user has actually set.

The F1 measure is the weighted harmonic mean of precision and
recall, which measures the effectiveness of tagging when treating
precision and recall as equally important, i.e.,

F1 = 2
Precision · Recall
Precision + Recall

.
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Experimental results

Protocol

Test set containing the 25% of the tags

Training set containing the remaining 75%.

Curves were obtained by averaging the Recall-Precision curves over
1186 images with at least 4 tags.

To calculate the recall and precision, the 15 top ranked tags are being
recommended to any test image.

Figure : The structure of query and result ranking vectors.
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Experimental results

Algorithms compared

ITH: Image Tagging on Hypergrapha

ITH-HWE: Image tagging on Hypergraph with Hyperedge Weight
Estimation (ICASSP 2015 algorithm)b

ITH-HWEG: Adaptive hypergraph weight estimation with gradient
descent and fixed adaptation step (ICASSP 2016 1st proposal)

ITH-HWEA Adaptive hypergraph weight estimation with gradient
descent and Armijo rule (ICASSP 2016 2nd proposal)

a
J. Bu, S. Tan, C. Chen, C. Wang, H. Wu, Z. Lijun, and X. He, Music recommendation by unified hypergraph:

combining social media information and music content, in Proc. ACM Conf. Multimedia, 2010, pp. 391-400.
b

K. Pliakos and C. Kotropoulos, “Weight estimation in hypergraph learning,” in Proc. IEEE Int. Conf.
Acoustics, Speech, and Signal Processing, 2015, pp. 1161-1165.
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Experimental results

Averaged recall-precision curves with initial hyperedge weights 1
n
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F1 measure at various ranking positions when the hyperedge weights
are initialized as 1

n

Initial weight set to
w(0) = 1

n
1n

F1@1 F1@2 F1@5 F1@10

ITH 0.307 0.444 0.520 0.440

ITH-HWE 0.349 0.556 0.675 0.517

ITH-WHEG 0.317 0.458 0.541 0.445

ITH-HWEA 0.420 0.676 0.720 0.560
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Experimental results

Averaged recall-precision curves when the initial hyperedge weights
are randomly initialized.
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Experimental results

F1 measure for ITH-HWEG and ITH-HWEA curves when the initial
hyperedge weights are randomly initialized.

Random initial weights F1@1 F1@2 F1@5 F1@10

ITH-WHEG 0.425 0.682 0.753 0.558

ITH-HWEA 0.431 0.695 0.760 0.560
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Experimental results

100 important weights for 3 images

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

100 most important weights

Image’s 2 important weights

in
de

x 
of

 th
e 

or
ig

in
al

 w
ei

gh
t m

at
rix

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

100 most important weights

Image’s 584 important weights

in
de

x 
of

 th
e 

or
ig

in
al

 w
ei

gh
t m

at
rix

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

100 most important weights

Image’s 1085 important weights

in
de

x 
of

 th
e 

or
ig

in
al

 w
ei

gh
t m

at
rix

A. Chassapi, C. Kotropoulos, and K. Pliakos (AUTH) ICASSP 2016 March 23rd, 2016 28 / 31



Experimental results

Histograms of hyperedge activations
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Conclusions

All the hyperedges do not hold the same importance as others. Some
of these hyperdges are more informative and thus should have higher
impact on the learning procedure.

Both the proposed methods ITH-HWEG and ITH-HWEA outperform
the baseline techniques.

The most effective tagging method employs randomly initialized
hyperedge weights and the Armijo rule for determining the adaptation
step.

The aforementioned choices reduce significantly the time needed for
algorithm convergence.
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