Introduction and motivation

 Multi-target tracking is an important building block in many applications, and prevalence of wireless sensors requires distributed solutions

 Consensus CPHD filter [1] requires sensors to fuse their local estimates; but missed detection by a single sensor can lead to track loss after fusion.

• We propose a new fusion algorithm which prevents track loss when not all sensors detect the target.

Fusion algorithm

Consider fusing local estimates $D^1(x)$ and $D^2(x)$

Consensus CPHD uses Kullback-Leibler average [1]

$$D_{KL}^{1,2}(x) = \frac{\sqrt{D_1(x)D_2(x)}}{\int \sqrt{D_1(x)D_2(x)}dx}$$

• We propose using arithmetic average

$$D_{AA}^{1,2}(x) = \frac{D_1(x) + D_2(x)}{2}$$

Distributed Multi-sensor CPHD Filter using Pairwise Gossiping

Jun Ye Yu, Mark Coates and Michael Rabbat

Electrical and Computer Engineering, McGill University jun.y.yu@mail.mcgill.ca, coates@ece.mcgill.ca, michael.rabbat@mcgill.ca

In case of missed detection by one sensor, we have $D^1(x) > 0$ and $D^2(x) \approx 0$. The two fusion algorithms yield $D_{KL}^{1,2}(x) \approx 0$ and $D_{AA}^{1,2}(x) > 0$ respectively.

Figure 2: Local estimate of sensor 2

y (m)

20

40 60 Time step

80

100

- Allow neighboring nodes to exchange measurements.
- Compute local estimate via general multi-sensor CPHD prior to fusion.

- CPHD filter.
- targets.
- 2013.

 The proposed fusion algorithm consistently outperforms existing fusion algorithm and leads to faster detection of new targets.

Proposed extension

• So far, each sensor only use its own measurements to compute local estimate.

 Exchanging measurement between neighboring sensors leads to significant improvement in tracking performance and the gain increases for larger neighborhood.

Conclusion

• We presented a new fusion rule for distributed

 The arithmetic average fusion leads to improved tracking performance and faster detection of new

References

[1] G. Battistelli, L. Chisci, C. Fantacci, A. Farina, and A. Graziano, "Consensus CPHD filter for distributed multitarget tracking,", IEEE J. Sel. Topics Signal Process.,

[2] S. Nannuru, S. Blouin, M. Coates, and M. Rabbat, "Multisensor CPHD filter,", preprint, available online at http://arxiv.org/abs/1504.06342, 2015.