Fast 2D Convolutions and Cross-Correlations Using Scalable Architectures
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Abstract Methods Results

The manuscript describes fast and scalable architectures and associated algorithms

for computing convolutions and cross-correlations. The basic idea is to map 2D N
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Discrete Periodic Radon Transform (DPRT) for general kernels and the use of SVD- E H S
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The approach uses scalable architectures that can be fitted into modern FPGA E A A, AAA o A EastCony
and Zyng-SOC devices. Based on different types of available resources, for P x P = A O
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and required numbers and types of resources. We provide implementations of the
proposed architectures using modern programmable devices (Virtex-7 and Zyng- 300 . . . o SliWin
SOC). Based on the amounts and types of required resources, we show that the _ _ _ 700 7000 70000 700000
proposed approaches significantly outperform current methods. Resources (1bit additions) O FFTr2

Fig. 2: Architecture for computing the 1D circular convolution.

Fig. 4: Family of fast and scalable architectures for N = 127 (N = 128 for FFTr2) in terms of Running time versus
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Fig. 1: 2-D Linear convolution using the Discrete Periodic Radon Transform and 1-D Circular convolutions
Fig. 5: Performance comparison between Sli Win (see references), FastConv and FastScaleConv. To measure

COHC]-USIOH performance, we consider the number of Frames Per Second (FPS) to perform the convolution between an image of
480p (640 x 480) and a kernel of size 19 x 19.

The manuscript introduced fast and scalable architectures for computing 2D cross-
PI‘Op osed Methods correlations and convolutions. FastConuv architectures deliver the best performance
by computing convolutions in O(P) clock cycles. The FastScaleConv family of ar-
chitectures allows us to implement eflicient architectures that can be restricted
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