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Abstract

The manuscript describes fast and scalable architectures and associated algorithms
for computing convolutions and cross-correlations. The basic idea is to map 2D
convolutions and cross-correlations to a collection of 1D convolutions and cross-
correlations in the transform domain. This is accomplished through the use of the
Discrete Periodic Radon Transform (DPRT) for general kernels and the use of SVD-
LU decompositions for low-rank kernels.
The approach uses scalable architectures that can be fitted into modern FPGA
and Zynq-SOC devices. Based on different types of available resources, for P × P
blocks, 2D convolutions and cross-correlations can be computed in just O(P ) clock
cycles up to O(P 2) clock cycles. Thus, there is a trade-off between performance
and required numbers and types of resources. We provide implementations of the
proposed architectures using modern programmable devices (Virtex-7 and Zynq-
SOC). Based on the amounts and types of required resources, we show that the
proposed approaches significantly outperform current methods.
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Fig. 1: 2-D Linear convolution using the Discrete Periodic Radon Transform and 1-D Circular convolutions

Proposed Methods

Method Hardware components

FastConv / FastXCorr 1D Circular convolver, FDPRT/iFDPRT [1]
FastScaleConv / FastScaleXCorr 1D Circular convolver, SFDPRT/iSFDPRT [1]
FastRankConv / FastRankXCorr 1D Linear convolver, Custom SRAM

Methods
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Fig. 2: Architecture for computing the 1D circular convolution.
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Fig. 3: FastScaleConv and FastScaleXCorr : Fast and scalable architecture system for computing 2D convolutions

and cross-correlations based on the DPRT.

Conclusion

The manuscript introduced fast and scalable architectures for computing 2D cross-
correlations and convolutions. FastConv architectures deliver the best performance
by computing convolutions in O(P ) clock cycles. The FastScaleConv family of ar-
chitectures allows us to implement efficient architectures that can be restricted
to the architectures of different devices. The FastRankConv family of architec-
tures allows us to consider low-rank approximations that can significantly reduce
the number of required resources. Overall, for the same level of performance, Fas-
tRankConv and FastScaleConv require significantly fewer hardware resources than
alternative approaches.

Results
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Fig. 4: Family of fast and scalable architectures for N = 127 (N = 128 for FFTr2) in terms of Running time versus

the required number of 1-bit additions. Similar plots are obtained for other resources.
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Fig. 5: Performance comparison between SliWin (see references), FastConv and FastScaleConv. To measure

performance, we consider the number of Frames Per Second (FPS) to perform the convolution between an image of

480p (640× 480) and a kernel of size 19× 19.
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