

LDS-RS Design and Channel Estimation for FDD Massive FD-MIMO Systems

Authors: Wendong Liu, Zhaocheng Wang and Xudong Zhu Presenter: Wendong Liu 2016.12.9

- Background
- System model
- Proposal
- Simulation results
- Conclusions

Background

- Full-dimension MIMO (FD-MIMO) is the promising structure to arrange massive MIMO in practical implementation
- Large downlink training overhead in frequency division duplex (FDD) protocol with massive antennas at the base station
- Compressive-sensing based downlink reference signal (RS) designs are sparsely scattered in time/frequency domain to reduce the overhead
- Propose the low-density spatial RS design based on channel correlation of 3D spatial channel model (3D SCM)

Background System model Proposal Simulation results Conclusions

3D SCM

Single-cell multiuser scenario

- > $M \times M$ URA
- K single-antenna users
- 3D spatial channel model $h_k \in \mathbb{C}^{1 \times M^2}$

$$\boldsymbol{h}_{k} = \operatorname{cvec}\left(\sum_{p=1}^{P} \rho_{k}^{p} \mathbf{e}(\beta_{k}^{p}) \otimes \mathbf{a}^{\mathrm{T}}(\beta_{k}^{p}, \theta_{k}^{p})\right)^{\mathrm{T}}$$

- P: number of multi-paths
- > cvec(·): column vectorization
- \succ \otimes : Kronecker-product operation
- > ρ_k^p : large-scale fading coefficient
- > β_k^p , θ_k^p : angle-of-arrival in elevation and azimuth direction

3D SCM

Channel steering vector in elevation domain

$$\mathbf{e}(\beta) = \left[e^{-j2\pi m \frac{D}{\lambda} \sin\beta}\right]_{0 \le \mathbf{m} \le M-1}$$

Channel steering vector in azimuth domain

$$\mathbf{a}(\beta,\theta) = \left[e^{-j2\pi m \frac{D}{\lambda}\cos\beta\cos\theta}\right]_{0 \le m \le M-1}$$

- D: antenna spacing
- > λ : wavelength

Downlink Training

■ Downlink reference signal (RS) matrix $\Phi_k \in \mathbb{C}^{M^2 \times \tau}$ is transmitted

$$\boldsymbol{r}_k = \boldsymbol{h}_k \boldsymbol{\Phi}_k + \boldsymbol{n}_k$$

- > τ : number of time slots for downlink training, $\tau_0 > \tau \ge M^2$
- > τ_0 : channel correlation time
- Channel estimation

$$\widehat{\boldsymbol{h}}_k = \boldsymbol{r}_k \boldsymbol{\Phi}_k^{\mathrm{H}}$$

- > Φ_k^{H} : Conjugate-transpose of $\Phi_k, \Phi_k \Phi_k^{\mathrm{H}} = \mathbf{I}_{M^2}$
- Downlink training overhead becomes excessive large with growing *M* in massive MIMO systems

Background System model Proposal Simulation results Conclusions

Spatial Correlation LDS-RS Design Channel Estimation

Spatial Correlation

Spatial correlation for the *p*th sub-path between $\Delta = (u, v)$ and (0,0) elements

$$C_p(\Delta) = 2\pi \frac{D}{\lambda} \Delta \cdot \varphi_p$$

 $\succ \varphi_p = (\sin\beta^p, \cos\theta^p \cos\beta^p)$

Denote
$$S = \{(\rho_p, \varphi_p) | 1 \le p \le P\}$$

 $S \to C_p(\Delta) \to h(\Delta) = \sum_{p=1}^{P} \rho^p e^{-jC_p(\Delta)}$

- Channel spatial sparsity property
- > The size of Φ decreases from $O(M^2)$ to O(P)
- > The downlink training overhead is reduced significantly as $M \rightarrow \infty$

Single-path Channel

Single-path channel scenario is widely utilized in millimeterwave (mmWave) frequency NLOS Link

LOS Link

- Line-of-Sight (LOS) link
- NLOS link with LOS blockage and once reflection
- Simplification
 - > Dominant direct path: p = 1
 - \succ Power: $\rho^1 \gg \rho^p$, 1

$$h(\Delta) = \sum_{p=1}^{\infty} \rho^p e^{-jC_p(\Delta)} \approx \rho^1 e^{-jC_1(\Delta)}$$

- Only φ_1 needs to be estimated
- The size of RS matrix Φ is decreased to O(1)

LOS Blockage

Multi-path Channel

■ Sparsity mask set M ⊆ S contains the primary subpaths

$$\mathbb{M} = \left\{ \left(\rho^p, \varphi_p \right) : |\rho^p|^2 \ge \eta \max_{1 \le p \le P} |\rho^p|^2 \right\}$$

- > $0 < \eta < 1$: power threshold, controls the number of subpaths in M
- Select the sub-paths which possess enough power after the power attenuation during propagation
 - > |M| = 1 when $\eta = 1$ indicates near single-path channel
 - > |M| = P, M = S when $\eta \to 0$ indicates the complete channel
 - > The size of RS matrix Φ is decreased to O(|M|)

Spatial Correlation
LDS-RS Design
Channel Estimation

LDS-RS Design

- Low density spatial reference signal (LDS-RS) design
 - RSs are transmitted only in part of antennas
 - I: Antenna set used to transmit RSs
 - ≻ $Φ_{I} ∈ C^{|I| × τ'}$: RSs matrix
 - > $\widehat{h}_{\mathbb{I}}$: Estimated channel on set \mathbb{I}

 $\widehat{\boldsymbol{h}}_{\mathbb{I}} = \boldsymbol{r} \boldsymbol{\Phi}_{\mathbb{I}}^{\mathrm{H}}$

- For $M \times M$ URA
 - $I = \{(u, 0) | 0 \le u < N\} \cup \{(0, v) | 0 \le v < N\}$ = $I_e \cup I_a$
 - > I_e : Subset in elevation domain
 - > I_a : Subset in azimuth domain
 - ▶ $\hat{h}_{I} \in \mathbb{C}^{1 \times (2N-1)}$ can be separated into two parts: \hat{h}_{I_e} and \hat{h}_{I_a}

 $\cap \cap$

With RS

()

0000

Without RS

Spatial Correlation
LDS-RS Design
Channel Estimation

Channel Estimation

FFT-based post-processing on $\widehat{h}_{\mathbb{I}_e}$ and $\widehat{h}_{\mathbb{I}_a}$

$$\boldsymbol{b}_{\mathbb{I}_{e}} = \mathbf{F} \widehat{\boldsymbol{h}}_{\mathbb{I}_{e}} \\ \boldsymbol{b}_{\mathbb{I}_{a}} = \mathbf{F} \widehat{\boldsymbol{h}}_{\mathbb{I}_{a}}$$

- F: N-points FFT matrix
- Seek |M| peak values in the amplitude spectrum of b_{Ie} and b_{Ia}

$$\mathbb{L}_{e} = \left\{ l: \left| b_{\mathbb{I}_{e}}(l) \right| \geq \eta \max_{0 \leq l < N} b_{\mathbb{I}_{e}}(l) \right\}$$
$$\mathbb{L}_{a} = \left\{ l: \left| b_{\mathbb{I}_{a}}(l) \right| \geq \eta \max_{0 \leq l < N} b_{\mathbb{I}_{a}}(l) \right\}$$

 $\succ ||\mathbb{L}_e| = ||\mathbb{L}_a| = |M| \le N < M$

> ρ^l could be estimated by the amplitude of the peaks

Channel Estimation

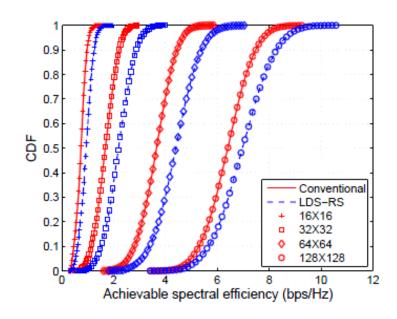
- Elements in L_e and L_a are sorted in descending order of ρ^l
- Every pair of $\theta(l_e, l_a)$ and $\beta(l_e)$ could be calculated

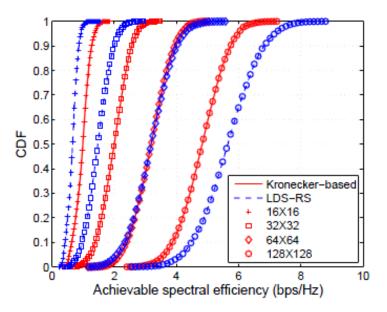
$$\beta(l_{\rm e}) = \arcsin \frac{\lambda}{D} \left(1 - \frac{l_{\rm e}}{N} \right)$$
$$\theta(l_{\rm e}, l_{\rm a}) = \arccos \frac{\lambda}{D \cos \beta(l_{\rm e})} \left(1 - \frac{l_{\rm a}}{N} \right)$$

The whole channel could be reconstructed by the estimated angle-of-arrivals

Background System model Proposal Simulation results Conclusions

Simulation Parameters


Single-cell multi-user scenario


Cell radius	500m
Height of BS	35m
Height of users	1.5m
Number of users	8
Path loss exponent	3.5
Variance of shadow fading	8dB
Carrier frequency	2GHz
Antenna spacing	$\lambda/2$
Number of paths	10
Angle spread of A-AoA	180 degrees
Angle spread of E-AoA	5 degrees

Performance Comparison

- Achievable spectral efficiency comparison between LDS-RS and convention RS designs
 - Left: Full-precoding
 - » Right: Kronecker-product based precoding

Background System model Proposal Simulation results Conclusions

Conclusions

- LDS-RS design is proposed for downlink training in FDD massive FD-MIMO systems
 - > Utilized the spatial correlation
 - Reduce the overhead considerably
 - Improve the downlink spectral efficiency
- The corresponding channel estimation algorithm
 - Low-complexity FFT-based post-processing

Thank you and questions please!