Locating Salient Group-Structured Image Features via Adaptive Compressive Sampling

Xingguo Li

Department of Electrical and Computer Engineering University of Minnesota Advisor: Prof. Jarvis Haupt

> GlobalSIP December 14, 2015

Background	Approach	Analysis	Performance	Conclusions	Extras
●000	00000	000	000000	000	00

Background and Motivation

Broad applications in image processing, computer vision, surveillance etc.

Broad applications in image processing, computer vision, surveillance etc.

• foreground segmentation

(AI & CV Lab., Seoul National University)

Background
ooooApproach
ooooAnalysis
oooPerformance
ooooooConclusions
oooExtras
oosalient feature detection/localization in images

Broad applications in image processing, computer vision, surveillance etc.

• foreground segmentation

(AI & CV Lab., Seoul National University)

• object detection/recognition

(PA & CV Dept., Italian Institute of Technology)

Background
ooooApproach
ooooAnalysis
oooPerformance
ooooooConclusions
oooExtras
oosalient feature detection/localization in images

Broad applications in image processing, computer vision, surveillance etc.

• foreground segmentation

(AI & CV Lab., Seoul National University)

image matching

(Oxford Visual Geometry Group)

• object detection/recognition

(PA & CV Dept., Italian Institute of Technology)

Background
ooooApproach
ooooAnalysis
oooPerformance
oooooConclusions
oooExtras
oosalient feature detection/localization in images

Broad applications in image processing, computer vision, surveillance etc.

• foreground segmentation

(AI & CV Lab., Seoul National University)

image matching

(Oxford Visual Geometry Group)

• object detection/recognition

(PA & CV Dept., Italian Institute of Technology)

visual surveillance

(Multimedia Lab, Chinese University of Hong Kong)

Background
0000Approach
0000Analysis
000Performance
000000Conclusions
000Extras
000salient feature detection/localization in images

Broad applications in image processing, computer vision, surveillance etc.

• foreground segmentation

(AI & CV Lab., Seoul National University)

image matching

(Oxford Visual Geometry Group)

• many more...

 \bullet object detection/recognition

(PA & CV Dept., Italian Institute of Technology)

visual surveillance

(Multimedia Lab, Chinese University of Hong Kong)

Background	Approach	Analysis	Performance	Conclusions	Extras
00●0	00000	000	000000	000	00
prior wor	′ks				

Bottom-up method: data-driven

- Contrast based: local contrast, global contrast (Itti et al. 1998, Achanta et al. 2009)
- Prior based: shape, location, background prior (Xie et al. 2013, Yang et al. 2013)
- Compressive Sensing based: low-rank homogeneous background + sparse salient foreground (Lang et al. 2012, Shen et al. 2013)

. Ē

Top-down method: task dependent / goal driven

- Supervised learning (Liu et al. 2007)
- Dictionary learning (Yang et al. 2012)
 - Ē

Background	Approach	Analysis	Performance	Conclusions	Extras
00●0	00000	000	000000	000	00
prior wo	rks				

Bottom-up method: data-driven

- Contrast based: local contrast, global contrast (Itti et al. 1998, Achanta et al. 2009)
- Prior based: shape, location, background prior (Xie et al. 2013, Yang et al. 2013)
- Compressive Sensing based: low-rank homogeneous background + sparse salient foreground (Lang et al. 2012, Shen et al. 2013)
 - ÷
 - •

Top-down method: task dependent / goal driven

- Supervised learning (Liu et al. 2007)
- Dictionary learning (Yang et al. 2012)
 - ÷

Drawback ! **FULL** imaging is required for feature/prior info. extraction. Can be prohibitive in some applications, e.g., gigapixel photos.

• Raw image features (RGB or intensity): treat salient features as *outliers*.

• Raw image features (RGB or intensity): treat salient features as *outliers*.

image patches $\stackrel{\text{vectorized}}{\longrightarrow}$ columns of M

• A two-step approach: assume matrices $\mathbf{M} \in \mathbb{R}^{n_1 \times n_2}$ admit a decomposition

M =

rank *r*

k-column sparse

• Raw image features (RGB or intensity): treat salient features as *outliers*.

image patches $\stackrel{\text{vectorized}}{\longrightarrow}$ columns of M

• A two-step approach: assume matrices $\mathbf{M} \in \mathbb{R}^{n_1 \times n_2}$ admit a decomposition

 $\underbrace{\underline{\text{Step 1}}}_{\text{convex demixing: argmin}_{L,C}} - \underbrace{dimension \ reduction: } \mathbf{Y}_{(1)} = \Phi MS \quad (m \times \gamma n_2) \\ \underbrace{convex \ demixing: \ argmin}_{L,C} \ \|\boldsymbol{L}\|_* + \lambda \|\boldsymbol{C}\|_{1,2} \ \text{ s.t. } \mathbf{Y}_{(1)} = \boldsymbol{L} + \boldsymbol{C}$

• Raw image features (RGB or intensity): treat salient features as *outliers*.

image patches $\stackrel{\text{vectorized}}{\longrightarrow}$ columns of M

• A two-step approach: assume matrices $\mathbf{M} \in \mathbb{R}^{n_1 \times n_2}$ admit a decomposition

- $\begin{array}{l} \underline{\text{Step 1}} & \textit{dimension reduction: } \mathbf{Y}_{(1)} = \Phi \text{MS} \quad (m \times \gamma n_2) \\ & \textit{convex demixing: } \operatorname{argmin}_{\boldsymbol{L},\boldsymbol{C}} \ \|\boldsymbol{L}\|_* + \lambda \|\boldsymbol{C}\|_{1,2} \ \text{ s.t. } \mathbf{Y}_{(1)} = \boldsymbol{L} + \boldsymbol{C} \end{array}$
- $\underline{\text{Step 2}} \text{ orthogonal projection: } \mathbf{y}_{(2)} = \phi \ \mathbf{P}_{\widehat{\mathcal{L}}_{(1)}^{\perp}} \Phi \mathbf{M} \mathbf{A}^{\mathsf{T}} \ (1 \times p)$ sparse inference: solve $\widehat{\mathbf{c}} = \operatorname{argmin}_{\mathbf{c}} \|\mathbf{c}_{j}\|_{1} \ \text{ s.t. } \mathbf{y}_{(2)} = \mathbf{c} \mathbf{A}^{\mathsf{T}}$

• Raw image features (RGB or intensity): treat salient features as *outliers*.

image patches $\stackrel{\text{vectorized}}{\longrightarrow}$ columns of M

• A two-step approach: assume matrices $\mathbf{M} \in \mathbb{R}^{n_1 \times n_2}$ admit a decomposition

- $\begin{array}{l} \underline{\text{Step 1}} & \textit{dimension reduction: } \mathbf{Y}_{(1)} = \Phi \text{MS} \quad (m \times \gamma n_2) \\ & \textit{convex demixing: } \operatorname{argmin}_{\boldsymbol{L},\boldsymbol{C}} \ \|\boldsymbol{L}\|_* + \lambda \|\boldsymbol{C}\|_{1,2} \ \text{ s.t. } \mathbf{Y}_{(1)} = \boldsymbol{L} + \boldsymbol{C} \end{array}$
- $\underline{\text{Step 2}} \text{ orthogonal projection: } \mathbf{y}_{(2)} = \phi \ \mathbf{P}_{\hat{\mathcal{L}}_{(1)}^{\perp}} \Phi \mathbf{M} \mathbf{A}^{\mathsf{T}} \ (1 \times p)$ sparse inference: solve $\hat{\mathbf{c}} = \operatorname{argmin}_{\mathbf{c}} \|\mathbf{c}_{j}\|_{1} \ \text{s.t. } \mathbf{y}_{(2)} = \mathbf{c} \mathbf{A}^{\mathsf{T}}$
- Theoretical guarantee: mγn₂ + p = O (r² log r + k log(n₂)) samples are sufficient for exact outlier identification w.h.p. (under structural assumptions)

Background	Approach	Analysis	Performance	Conclusions	Extras
0000	00000	000	000000	000	00

Group Adaptive Compressive Sensing (GACS) for Salient Features

Salient features may be "grouped" in the pixel space

Collect Measurements: $\textbf{Y}_{(1)} := \Phi \textbf{MS} = \Phi(\textbf{L} + \textbf{C})\textbf{S}$ where

- $\mathbf{\Phi} \in \mathbb{R}^{m imes n_1}$ is a (random) measurement matrix (m < n)
- For $\gamma \in (0,1)$, **S** is a column sub matrix of identity with $\approx \gamma n_2$ columns (rows sampled iid from a Bernoulli(γ) model)

Apply Outlier Pursuit (Xu et al. 2012) to "pocket-sized" data Φ MS (Idea: identify span of Φ L. Same 1st step as previous work)

 Background
 Approach
 Analysis
 Performance
 Conclusions
 Extras

 0000
 000
 000
 000
 000
 000
 000

 a two-step approach (step 2)

Collect measurements $\mathbf{y}_{(2)} := \phi \; \mathbf{P}_{\widehat{\mathcal{L}}_{(1)}^{\perp}} \mathbf{\Phi} \mathbf{M} \mathbf{A}^{\mathsf{T}}$ where

- $\Phi \in \mathbb{R}^{m imes n_1}$ is same (random) measurement matrix as in step 1,
- $\widehat{\mathcal{L}}_{(1)}$ is the linear subspace spanned by col's of $\widehat{\mathbf{L}}_{(1)}$ (learned in step 1)
- $\mathbf{P}_{\widehat{\mathcal{L}}_{(1)}}$ is orthogonal projector onto $\widehat{\mathcal{L}}_{(1)}$, and $\mathbf{P}_{\widehat{\mathcal{L}}_{(1)}^{\perp}} \triangleq \mathbf{I} \mathbf{P}_{\widehat{\mathcal{L}}_{(1)}}$
- $\phi \in \mathbb{R}^{1 imes m}$ a random vector, $\mathbf{A} \in \mathbb{R}^{p imes n_2}$ a random matrix

Solve $\widehat{\mathbf{c}} = \operatorname{argmin}_{\mathbf{c}} \sum_{j=1}^{J} \|\mathbf{c}_{j}\|_{2}$ s.t. $\mathbf{y}_{(2)} = \mathbf{c} \mathbf{A}^{T}$

- group sparsity extension of previous work
- $\sum_{j=1}^{J} \|\mathbf{c}_j\|_2$ is a group norm
- J is the number of groups
- $\mathbf{c}_j \in \mathbb{R}^B$ is a subvector of $\mathbf{c} \in \mathbb{R}^{n_2}$, with $B = n_2/J$ as the size of each group
- support(ĉ) ≜ {i : ĉ_i ≠ 0} is the estimate for outlier locations

Background	Approach	Analysis	Performance	Conclusions	Extras
0000	00000	00	000000	000	00

Performance Analysis

structural	"identi	fiability"	assumptions		
Background	Approach	Analysis	Performance	Conclusions	Extras
0000	00000	○●○	000000	000	00

Def'n: (Column Incoherence Property)

Matrix $\mathbf{L} \in \mathbb{R}^{n_1 \times n_2}$ with $n_{\mathbf{L}} \le n_2$ nonzero columns, rank r, and compact SVD $\mathbf{L} = \mathbf{U} \Sigma \mathbf{V}^*$ is said to satisfy the *column incoherence property* with parameter $\mu_{\mathbf{L}}$ if

$$\max_{i} \|\mathbf{V}^* \mathbf{e}_i\|_2^2 \le \mu_{\mathsf{L}} \frac{r}{n_{\mathsf{L}}},$$

where $\{\mathbf{e}_i\}$ are basis vectors of the canonical basis for \mathbb{R}^{n_2} .

(small μ_L precludes subspaces \mathcal{L} defined by single col's of L; an assumption that guarantees identifiability of {L, C})

Def'n: (Column Incoherence Property)

Matrix $\mathbf{L} \in \mathbb{R}^{n_1 \times n_2}$ with $n_{\mathbf{L}} \le n_2$ nonzero columns, rank r, and compact SVD $\mathbf{L} = \mathbf{U} \Sigma \mathbf{V}^*$ is said to satisfy the *column incoherence property* with parameter $\mu_{\mathbf{L}}$ if

$$\max_{i} \|\mathbf{V}^* \mathbf{e}_i\|_2^2 \le \mu_{\mathsf{L}} \frac{1}{n_{\mathsf{L}}},$$

where $\{\mathbf{e}_i\}$ are basis vectors of the canonical basis for \mathbb{R}^{n_2} .

(small μ_L precludes subspaces \mathcal{L} defined by single col's of L; an assumption that guarantees identifiability of {L, C})

Graphically:

$$\mathbf{L} = \mathbf{U} \sum_{\substack{\boldsymbol{\Sigma} \\ \boldsymbol{\psi} \neq \boldsymbol{\psi} \neq \boldsymbol{\psi}}} \mathbf{V}^{\star} \underbrace{\mathbf{V}^{\star}}_{\substack{\boldsymbol{\psi} \neq \boldsymbol{\psi} \neq \boldsymbol{\psi}}}_{\boldsymbol{\psi} \neq \boldsymbol{\psi}} \underbrace{\mathbf{V}^{\star}}_{\boldsymbol{\psi} \neq \boldsymbol{\psi}} \underbrace{\mathbf{V}^{\star}}_{\boldsymbol{\psi$$

provable	recoverv				
Background	Approach 00000	Analysis 00●	Performance 000000	Conclusions	Extras 00

Structural conditions: (Xu et al. 2012)

Suppose components L and C satisfy the structural conditions: (1) rank(L) = r, (2) L has $n_{L} \leq n_{2}$ nonzero columns, (3) L satisfies the *column incoherence property* with parameter μ_{L} , and (4) $|\mathcal{I}_{C}| = k$.

Theorem: (Li & Haupt, GlobalSIP, 2015)

For any $\delta \in (0, 1)$, take $k \le n_2/(c_1 r \mu_L), \quad \gamma \ge c_2 r \mu_L \log r/n_L,$ $m \ge c_3(r + \log k), \quad p \ge c_4 \left(k + (k/\sqrt{B}) \log((n_2 - k)/B)\right).$

let ϕ have elements drawn iid from any continuous distribution, and take the outlier pursuit reg. parameter $\lambda = \frac{3}{7\sqrt{k_{\rm ub}}}$, where $k_{\rm ub}$ is any upper bound of k. The following hold simultaneously w.p. $\geq 1 - 3\delta$: the support estimate produced by our method is correct, and the no. of obs. is no greater than

as few as
$$\mathcal{O}((r+\log k)(\mu_{L}r\log r)+k+\frac{k}{\sqrt{B}}\log \frac{n_{2}}{B})$$

Background	Approach	Analysis	Performance	Conclusions	Extras
0000	00000	000	•00000	000	00

Experimental Results

Recall: vectorize (non-overlap) image patches into columns of ${\bf M}$

Advantage of grouping features: lower sample demands

$$\mathcal{O}((r + \log k)(\mu_{\mathsf{L}}r \log r) + k + \frac{k}{\sqrt{B}}\log\frac{n_2 - k}{B}) \text{ vs.}$$

$$\mathcal{O}((r + \log k)(\mu_{\mathsf{L}}r \log r) + k \log\frac{n_2}{k})$$

Recall: vectorize (non-overlap) image patches into columns of ${\bf M}$

Advantage of grouping features: lower sample demands

$$\mathcal{O}((r + \log k)(\mu_{\mathsf{L}}r \log r) + k + \frac{k}{\sqrt{B}}\log\frac{n_2 - k}{B}) \text{ vs.}$$

$$\mathcal{O}((r + \log k)(\mu_{\mathsf{L}}r \log r) + k \log\frac{n_2}{k})$$

Detection results with the grouping effect. (a) original images; (b) ground truth; detection result (c) w/o grouping (B = 1) and with grouping effects; (d) B = 2; and (e) B = 3. Sampling rate: 2.5% ($\gamma = 0.2$, $m = 0.1n_1$ and $p = 0.5n_2$).

low-level	image f	eatures			
Background	Approach	Analysis	Performance	Conclusions	Extras
0000	00000	000	00●000		00

Each step of our two-step process obtains linear measurements of the image pixels.

 \Rightarrow Can incorporate any linear "preprocessing" (e.g., *filtering*) into the overall measurement model at the feature acquisition stage.

 Background
 Approach
 Analysis
 Performance
 Conclusions
 Extras

 0000
 0000
 000
 000
 000
 000
 000

 Iow-level image features

Each step of our two-step process obtains linear measurements of the image pixels.

 \Rightarrow Can incorporate any linear "preprocessing" (e.g., *filtering*) into the overall measurement model at the feature acquisition stage.

Gray scale (maginitude of entries of \hat{c}) saliency map estimation.(a) original images; (b) ground truth; (c)-(e) RGB planes individually; filtered intensity images with (f) Laplacian of Gaussian filter, (g) Horizontal Edge filter and (h) Vertical Edge filter. Sampling rate: 4.5% ($\gamma = 0.2$, $m = 0.2n_1$, $p = 0.5n_2$, $n_1 = 100$ and $n_2 = 1200$)

State-of-the-art methods:

- spectral residual (SR) (Hou & Zhang 2007)
- self-resemblance (SeR) (Seo & Milanfar 2009)
- global based (GB) (Harel et al. 2006)
- frequency tuned (FT) (Achanta et al. 2009)
- spatially weighted dissimilarity (SWD) (Duan et al. 2011)
- low rank (LR) (Shen & Wu 2012)
- region contract (RC) (Cheng et al. 2014)

Database: MSRA10K (Cheng et al. 2014)

Detection results for the MSRA10K Salient Object Database for various methods. For our approach, the results correspond to G, LoG, I, and R respectively from top to bottom. Sampling rate: 2.5% on average.

More results:

- Precision: $P = \frac{TP}{TP+FP}$, TP: true positive, FP: false positive
- Recall: $R = \frac{TP}{TP+FN}$, FN: false negative
- F-measure = max_{P,R} $\frac{(\beta^2+1)P\cdot R}{(\beta^2P+R)}$, $\beta^2 = 0.3$

Background	Approach	Analysis	Performance	Conclusions	Extras
0000	00000	000	000000	•00	00

Conclusions

0000	00000	000	000000	000	00
final co	mments				

Direct saliency localization is possible (w/o full imaging)

- Low sample complexity
- Low computational complexity

Extensions under examination:

- Non-linear "post-processing" of image features
- Observation with missing data

Current investigation:

- Seek known patterns embedded in unknown backgrounds (Where's Waldo?)
- Stability analyses (e.g., in noisy settings or when data are missing or both)

Techniques like GACS may become increasingly **IMPORTANT** when data becomes bigger and bigger!

Advisor/Coauthor: Prof. Jarvis Haupt

Research Support:

NSF Award No. CCF-1217751 (Exploiting Saliency in Compressive and Adaptive Sensing)

Thanks!

lixx1661@umn.edu http://www.tc.umn.edu/~lixx1661/

Background	Approach	Analysis	Performance	Conclusions	Extras
0000	00000	000	000000	000	•0

Extra Slides

Further exploration of feature extraction, e.g., "stacked HSI" (RGB to HSI on the compressed data $\Phi {\rm M})$

Overall procedure of feature acquisition, up to ΦM , is still linear

Further exploration of feature extraction, e.g., "stacked HSI" (RGB to HSI on the compressed data $\Phi {\rm M})$

Overall procedure of feature acquisition, up to ΦM , is still linear

Gray scale (maginitude of entries of \hat{c}) saliency map estimation. (a) original images; (b) ground truth; (c)-(e) RGB planes; (f)-(h) stacked HSI individually; filtered intensity images with (i) Laplacian of Gaussian filter, (j) Horizontal Edge filter and (k) Vertical Edge filter. Sampling rate: 4.5% ($\gamma = 0.2$, $m = 0.2n_1$, $p = 0.5n_2$, $n_1 = 100$ and $n_2 = 1200$)