No-reference HDR Image Quality Assessment Method Based on Tensor Space

Feifan Guan, Gangyi Jiang, Yang Song, Mei Yu*, Zongju Peng, Fen Chen

Ningbo University, China

Introduction

Methodology

> Experiments

Conclusions

Introduction

Traditional LDR Image:

- Dynamic range 10²: 1
- Much smaller than real world

HDR Image:

- Dynamic range **10¹⁰: 1** or higher
- Details in dark/bright regions
- Much close to **real world**

LDR

- Poor Watching Experience
- More Information
- Better Watching Experience

No-reference HDR Image Quality Assessment Method Based on Tensor Space

HDR

HDR Coding Framework:

*HDR-IQA = High Dynamic Range Image Quality Assessment

Introduction

Motivation:

Original and distorted HDR image

<u>Causes of quality degradation:</u>

- Structure be destroyed
- Detail information loss
- Unable to get reference image

Solution:

- Extract quality features
- ➢ No-reference (NR)

Approach:

✓ NR HDR-IQA method

Framework:

NR HDR IQA Method

Pre-processing—Tensor space:

Purpose:

✓ Represent high-dimensional data

✓ Color information of an HDR image

Tucker decomposition:

$$\boldsymbol{\mathcal{I}} = \boldsymbol{\boldsymbol{\zeta}} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \times_3 \mathbf{U}^{(3)} = \boldsymbol{\boldsymbol{\xi}} \times_3 \mathbf{U}^{(3)}$$

$$\mathbf{I}_{t} = \mathbf{U}_{t,1}^{(3)}\boldsymbol{\theta}_{1} + \mathbf{U}_{t,2}^{(3)}\boldsymbol{\theta}_{2} + \mathbf{U}_{t,3}^{(3)}\boldsymbol{\theta}_{3} = \sum_{i=1}^{3} \mathbf{U}_{t,i}^{(3)}\boldsymbol{\theta}_{i}$$

$$\|\mathcal{I}\|^{2} = \|\mathcal{E}\|^{2} = \sum_{i=1}^{3} \|\mathbf{\theta}_{i}\|^{2}, \|\mathbf{\theta}_{1}\|^{2} \ge \|\mathbf{\theta}_{2}\|^{2} \ge \|\mathbf{\theta}_{3}\|^{2}$$

The HDR image can then be represented by a third-order tensor \mathcal{J} of the size $M \times N \times 3$, ξ is the core tensor;

 θ_i (1 $\leq i \leq 3$) is the *i*-th channel matrix of size $M \times N$ of the core tensor. Here, { $\theta_i | i=1,2,3$ } represents a set of feature maps, and these three feature maps are collectively called the **tensor space**.

III represents the Frobenus norm.

No-reference HDR Image Quality Assessment Method Based on Tensor Space

Feature extraction—Structure:

Purpose:

- ✓ First feature map contains main energy of an HDR image
- ✓ Manifold learning can find the inherent geometric structure

Feature extraction—Contrast:

Purpose:

 \checkmark Second and third feature map shows the details information

 \checkmark As complementary feature, Contrast information is important

Quality prediction:

Multi-scale manifold structure feature set f_{MS} of the HDR image is produced as follows:

 $\mathbf{f}_{MS} = [\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3, \mathbf{f}_4, \mathbf{f}_5]$

Perceived detail contrast feature \square σ (Quality-aware feature) \square $\mathbf{f}_{i+5} = (\sigma_{\theta_2}(i), \sigma_{\theta_3}(i) \text{ (five scales)}$

Multi-scale perceived detail contrast feature set is produced as:

$$\mathbf{f}_{PC} = [\mathbf{f}_6, \mathbf{f}_7, \mathbf{f}_8, \mathbf{f}_9, \mathbf{f}_{10}]$$

Performance Indexes in Nantes* & EPFL* database:

Databa -ses	Indexes	PU- MSE	PU- SSIM	PU- DIIVI- NE	HDR- VDP- 2.2	Propo- sed	MSE, SSIM and DIIVINE are representative LDR IQA methods, HDR-VDP-2.2 is considered the
Nantes	PLCC	0.4471	0.6056	0.2613	0.7329	0.9269	state-of-the-art FR HDR IQA method.
	SROCC	0.4197	0.6528	0.2271	0.7047	0.9153	*PU=Perceptually Uniform
	RMSE	0.9019	0.8006	0.9712	0.6485	0.3671	*Nantes HDR image database
EFPL	PLCC	0.8241	0.9178	0.5892	0.9500	0.9015	Narwaria M, <i>et al</i> .2013.
	SROCC	0.8385	0.9191	0.5081	0.9419	0.8740	*EPFL HDR image database
	RMSE	0.6798	0.4750	0.9668	0.3736	0.5016	Pavel Korshunov, et al.2015.

- **Traditional LDR-IQA method**: not competent for HDR image
- Existing HDR-IQA method: accurate but can be better
- **Proposed NR HDR-IQA method**: fully consideration of typical distortion in

HDR image

Contributions of this work:

- Proposed a NR HDR image quality assessment method
- A new HDR feature representation space, named tensor space, is constructed and used to define and extract the new features of an HDR image effectively
- Applying the image manifold feature to visual quality assessment

Conclusions

Future Work:

- Improvement of proposed method
 - Better quality feature for NR HDR IQA
- > Application of proposed method
 - Guidance in designing of new HDR video coding scheme
 - Concentrating on HDR video quality assessment

Thank you !

