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 Deep neural network (DNN) and progress in automatic 
speech recognition (ASR) 
 In acoustic modeling, appearance of DNN-hidden 

Markov model (HMM) system is considered as a 
breakthrough. 

 Capability in automatically learning complicated non-
linear mapping from the input to the target vectors. 

 Expanded to the robust speech recognition area. 
 

 DNN-based robust speech recognition 
 Feature-based approach 
 Directly trains an arbitrary unknown mapping from the noisy 

to the clean speech features 
 Deep denoising autoencoder (DDAE) has demonstrated its 

superiority in reconstructing the clean features from noisy 
features 

 Model-based approach 
 Let the DNN parameters find out the relationship between 

the observed speech and the phonetic targets 
 Noise-aware training (NAT) attained the state-of-the-art 

results on Aurora-4 task 
 

 Properties of noise aware training (NAT) 
 Follows the general procedure of the multi-condition 

DNN-HMM, except for the input structure of network 
 Augments the input signal by concatenating the 

distorted feature and the noise estimate 
 Enables the DNN to learn the relationship among noisy input, 

noise features and target vectors corresponding to the 
phonetic identity 
 

 Remaining issues on NAT 
 Is NAT an optimal method for sufficiently utilizing the 

inherent robustness of DNN? 
 Performance of NAT in adverse environment is still far from 

that in clean condition 
 A promising way to improve the NAT is to extract some 

hidden representation relevant to clean speech features and 
then to implement the mapping from this representation to 
the phonetic targets 

 
 What we propose? 
 A novel approach to DNN training which can be a 

solution to the aforementioned issue of NAT 
 Let the DNN clarify the relationship among noisy features, 

noise estimates and phonetic targets only after reconstructing 
the clean features. 

Introduction 

Two-stage noise aware training 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

 The assumption that the function 𝑓(∙) can be expressed as a 
composition of two separate functions as follows: 
 

𝑝 𝒔𝑡 𝒚1𝑇  ≅ 𝑓 𝒚𝑡−𝜏𝑡+𝜏,𝒏𝑡−𝜏𝑡+𝜏 ≅ ℎ ∘ 𝑔 𝒚𝑡−𝜏𝑡+𝜏,𝒏𝑡−𝜏𝑡+𝜏      

 
 

 We have proposed a DNN-based acoustic model for effective 
usage of multi-condition data and its noise estimate 
 Addresses the mapping from noisy speech and noise 

estimates to phonetic targets effectively by concatenating 
two DNNs 
 Clean feature reconstruction 
 Prediction of posterior probability over HMM states 

 Proposed technique outperforms NAT in word accuracy 
on Aurora-5 
 
 

 

Conclusions 

Brief review on noise aware training 

 
 

 Aurora-5 task 
 Noise and reverberation on hands-free, speech digit 
 Training set : 8623 utterances (4 hours) 
 Evaluation set : 8700 utterances per each condition 

 
 
 
 
 

 Clean-condition GMM-HMM setting 
 Feature : 39 dim. MFCC feature + CMN 
 Language model : uniform unigram 
 Number of HMM states : 179-dim 

 
 Tested DNN-based acoustic modeling methods 
 Multi-condition DNN-HMM (Baseline) 
 Noise aware training (NAT)  
 Two-stage Noise aware training (TS-NAT) 

Experiment 

     Where the output of 𝑔(∙) is a clean feature vector stream, 
 

𝒙𝑡−𝜏𝑡+𝜏 ≅ 𝑔 𝒚𝑡−𝜏𝑡+𝜏,𝒏𝑡−𝜏𝑡+𝜏 ,      
     and 

𝑝 𝒔𝑡 𝒚1𝑇  ≅ ℎ 𝒙𝑡−𝜏𝑡+𝜏  
 
 
 
 
 
 
 
 

 Lower DNN 
 For initializing the lower DNN, DDAE is applied 
 Noise-related nodes are excluded in the output layer at 

the fine-tuning phase 
 The DDAE is designed to have an asymmetric structure 

where the dimensions of the input and output vector are 
different 

𝒗�𝑡 = [𝒙�𝑡−𝜏𝑡+𝜏] 
 A time-varying environmental estimation approach 

based on the interacting multiple model algorithm is 
utilized for noise estimation(Han, Kang and Kim, 2009) 

 
 Upper DNN 
 The network learns the mapping between the output 

vector of the lower DNN 𝒗�𝑡 and the corresponding one-
hot encoding label which contains information of the 
HMM states. 
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Brief review on noise aware training 
 

 
 
 
 
 
 
 
 

 We assume that there exists an unknown underlying 
function that approximates the posterior probabilities of the 
HMM states given as follows: 
 

𝑝 𝒔𝑡 𝒚1𝑇  ≅ 𝑓(𝒚𝑡−𝜏𝑡+𝜏,𝒏𝑡−𝜏𝑡+𝜏) 
 
 
 
 
 NAT replaces them with a single noise estimate 
 The input vector of NAT is formed by augmenting the 

noise estimate with a window of consecutive frames of 
noisy feature, i.e., 
 

𝒗𝑡 = [𝒚𝑡−𝜏𝑡+𝜏,𝒏�𝑡] 
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Posterior probability 
over HMM states 𝑔(∙) : function which deals with the mapping from the noisy and 

noise features to the clean speech features 
ℎ(∙) : function predicting the phonetic target based on the clean 

speech feature stream. 

𝒚𝑡 , 𝒙𝑡 ,𝒏𝑡 , 𝒔𝑡 : Noisy feature, clean feature, noise feature, and 
HMM state identity extracted at the 𝑡–th frame 

𝒚𝑚1
𝑚2 : Subsequence of noisy feature vectors from frame index 

𝑚1 to 𝑚2 

Concatenation 

𝑝 𝒔𝑡 𝒚1𝑇  ≅ 𝑓 𝒚𝑡−𝜏𝑡+𝜏,𝒏𝑡−𝜏𝑡+𝜏 ≅ ℎ ∘ 𝑔 𝒚𝑡−𝜏𝑡+𝜏,𝒏𝑡−𝜏𝑡+𝜏      

 Structure of DNNs 
 Lower DNN (TS-NAT) 
 Input vector: 69-dim. Log mel-filter bank (LMFB) feature, 

context window size 5, noise estimate (828 dim.) 
 5 hidden layers with 2048 nodes , sigmoid activation 
 Target vector : 69-dim. clean LFMB feature, context window 

size 5 (759 dim.) 
 Upper DNN (TS-NAT) 
 Input vector: Reconstructed vector lower DNN (759 dim.) 
 5 hidden layers with 2048 nodes , sigmoid activation 
 Target vector: 179 HMM state labels, softmax activation 

 Baseline 
 Input vector: 69-dim. LMFB feature, context window size 5 

(759 dim.) 
 11 hidden layers with 2048 nodes, sigmoid activation 
 Target vector : 179 HMM state labels, softmax activation 

 NAT  
 Input vector: 69-dim. LMFB feature, context window size 5, 

noise estimate (828 dim.) 
 Same with Baseline in hidden layer and target vector 

 
 Performance evaluations 
 WER (%) on Aurora-5 task 

 
 
 
 
 
 

 
 

 WER (%) on Aurora-5 task with dropout (20%) 

SNR (DB) Non-filtered G.712 filtered 
Method Baseline NAT TS-NAT Baseline NAT TS-NAT 

Clean 1.32 1.25 0.89 0.90 0.87 0.71 

15 1.88 1.95 1.51 1.28 1.21 0.94 

10 3.33 3.42 2.88 2.09 1.94 1.60 

5 7.83 8.09 7.14 4.71 4.36 4.06 

0 20.85 20.67 19.64 13.13 11.94 11.92 

Avg. 7.04 7.08 6.41 4.42 4.06 3.85 

SNR (DB) Non-filtered G.712 filtered 
Method Baseline NAT TS-NAT Baseline NAT TS-NAT 
Clean 1.32 1.05 0.91 0.84 0.78 0.85 

15 1.87 1.78 1.52 0.90 1.15 0.92 

10 3.29 3.18 2.59 1.89 1.88 1.31 

5 7.77 7.62 6.63 4.33 3.97 3.68 

0 20.60 19.92 19.30 11.92 11.57 11.36 

Avg. 6.97 6.71 6.19 3.98 3.87 3.62 
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