Stochastic Truncated Wirtinger Flow Algorithm for Phase Retrieval using Boolean Coded Apertures

Samuel Pinilla - Camilo Noriega

Under the supervision of the Ph.D Henry Arguello Universidad Industrial de Santander Colombia

ICASSP 2017

ICASSP - New Orleans

- Crystallography
- Peasible Modulation
- In the second second

Conclusions and Future Work

< D > < 🗗

入 くほん くほん

2) Feasible Modulation

3 Results

イロト イポト イヨト イヨ

Crystallography

X-ray crystallography is an experimental technique used in material analysis that allows to measure the atomic positions of the elements present in a crystal.

Drug design

Mineralogy

New materials

イロト イロト イヨト イヨト

Figure: Important applications of X-ray Crystallography

Coded Diffraction Patterns System

Figure: Coded diffraction pattern system¹.

¹Candes, E. J., Li, X., and Soltanolkotabi, M. (2015). Phase retrieval from coded diffraction patterns. Applied and Computational Harmonic Analysis, 39(2), 277-299 **ADD State Sta**

Formulation

Coded Measurements

$$y_k^\ell = |\langle \mathbf{f}_k, \mathbf{G}^\ell \mathbf{x} \rangle|^2, k = 1, \dots, m,$$

where

•
$$\forall \ell \in \{1, \cdots, L\}, \mathbf{G}^{\ell} \in \mathbb{C}^{n \times n}$$
 is a diagonal matrix.

- f_k ∈ Cⁿ are the rows of the 2D Discrete Fourier Transform matrix.
 x ∈ Cⁿ is unknown.
- $\ell = 1, \cdots, L$ is the projection indexing variable.

イロト イポト イヨト イヨト

Inverse Problem

Optimization Problem

The Truncated Wirtirger Flow Algorithm solves the optimization problem².

²Chen, Y., and Candes, E. (2015). Solving random quadratic systems of equations is nearly as easy as solving linear systems. In Advances in Neural Information Processing Systems (pp. 739-747).

TWF Algorithm Characteristics

TWF Reconstruction Algorithm Characteristics:

- It uses $\{i, -i\}$ codes.
- Maximum likelihood estimated is optimized.
- $\forall k \in \{1, \cdots, m\}, \mathbf{a}_k \sim \mathcal{CN}(0, \mathbf{I}).$
- It requires truncation parameters, (*α*₀, *α*₁, *α*₂, *α*₃).

Limitation

The implementation of $\{-i, i\}$ codes are impractical.

1 11000 1000101010	\mathbf{P}	hase	Re	trie	va
--------------------	--------------	------	----	------	----

イロト イヨト イヨト

3 Results

イロト イロト イヨト イヨト

Proposed Modulation

The main idea is to modified the TWF algorithm to adjust blockunblock coded apertures.

Binary Modulation

$$g = \begin{cases} -1 & \text{with probability } 1/2\\ 1 & \text{with probability } 1/2 \end{cases}$$

where *g* is a Bernoulli random variable *d*. Remark that $\mathbb{E}[g] = 0$.

Coded Observation Model:

$$y_k^{\ell} = |\langle \mathbf{f}_k, \mathbf{G}^{\ell} \mathbf{x} \rangle|^2 = \Big| \underbrace{\sum_{j=1}^n (\mathbf{f}_k)_j \mathbf{G}_{j,j}^{\ell}(\mathbf{x})_j}_{j=1} \Big|^2, k = 1, \dots, m.$$

where $v_k \sim C\mathcal{N}(0, \sigma^2)$ inasmuch $n \to \infty$, by the Central Limit Theorem³.

³Arguello, H., and Arce, G. R. (2014). Colored coded aperture design by concentration of measure in compressive spectral imaging. IEEE Transactions on Image Processing, 23(4), 1896-1908.

Boolean Formulation

Definitions

Feasible Implementation

$$egin{aligned} &y_k^\ell = |\langle \mathbf{f}_k, \mathbf{G}^\ell \mathbf{x}
angle|^2 \ &= |\langle \mathbf{f}_k, (\mathbf{D}^\ell - \mathbf{E}^\ell) \mathbf{x}
angle|^2 \ &= 2(|\langle \mathbf{f}_k, \mathbf{D}^\ell \mathbf{x}
angle|^2 + |\langle \mathbf{f}_k, \mathbf{E}^\ell \mathbf{x}
angle|^2) - |\langle \mathbf{f}_k, \mathbf{x}
angle|^2. \end{aligned}$$

Remark: The three terms can be implemented by using boolean coded apertures.

D		$\mathbf{D} \sim$	Last an	
$-\mathbf{P}$	nase.	ĸe	trie	va

Truncated Parameters Estimation

MCMC Scheme

The truncation parameters satisfy that $\alpha_j \ge 0, j = 0, \cdots, 3$.

• Independent Priors

$$\alpha_j \sim \frac{1}{\alpha_j \sqrt{2\pi}} \exp\left[\frac{-(\ln(x) - \mu_j)^2}{2\sigma_j^2}\right], \forall j = 0, \cdots, 3.$$

Decision Rule

$$p_r = min\left\{1, \frac{\mathcal{P}(\mathbf{p}^{new}|\mu_0, \cdots, \mu_3)q(\mathbf{p}^{old}|\mathbf{p}^{new})}{\mathcal{P}(\mathbf{p}^{old}|\mu_0, \cdots, \mu_3)q(\mathbf{p}^{new}|\mathbf{p}^{old})}\right\}$$

where $q(\mathbf{p}^{new}|\mathbf{p}^{old}) = \prod_{j=0}^{3} \frac{1}{\alpha_j \sqrt{2\pi}} \exp\left[\frac{-(\ln(\mathbf{p}_j^{old}) - \mu_j)^2}{2\sigma_j^2}\right]$ and $\mathbf{p} = [\alpha_0, \cdots, \alpha_3].$

Crystallography

2) Feasible Modulation

3 Results

イロト イロト イヨト イヨト

Stochastic Truncated Wirtinger Flow Algorithm

Algorithm 1 STWF-Algorithm¹

function STWF-Algorithm (\mathbf{y}, T) $\{\mathbf{\tilde{a}}_k = \mathbf{G}\mathbf{f}_k \in \mathbb{C}^n | 1 \le k \le n\}$ $\{\alpha_0, \alpha_1, \alpha_2, \alpha_3\}$ (truncation parameters) $\lambda_0 \leftarrow \sqrt{\frac{1}{n} \sum_{k=1}^n y_k}$ $\mathbf{H} \leftarrow rac{1}{n}\sum\limits_{k=1}^{n}y_k\mathbf{\tilde{a}}_k\mathbf{\tilde{a}}_k^*\mathbf{1}_{\{|y_k| \le lpha_3^2\lambda_0^2\}}$ $\mathbf{x}^{(0)} \leftarrow \sqrt{\frac{n^2}{\sum\limits_{k=1}^{n} \|\mathbf{\tilde{a}}_k\|^2}} \lambda_0 \tilde{\mathbf{x}} \text{ ($\tilde{\mathbf{x}}$ is the leading eigenvector of \mathbf{H})}$ for t = 1 to T do $\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} + \frac{2\mu_t}{n} \sum_{j=1}^n \frac{\left(y_k - |\mathbf{\tilde{a}}_k^* \mathbf{x}^{(t)}|^2\right)}{\mathbf{x}^{(t)H} \mathbf{\tilde{a}}_k} \mathbf{\tilde{a}}_k \mathbf{1} \epsilon_1^k \cap \epsilon_2^k$ end for return $\mathbf{x}^{(T)}$ end function

¹Candes, E. J., Li, X., and Soltanolkotabi, M. (2015). Phase retrieval from coded diffraction patterns. Applied and Computational Harmonic Analysis, 39(2), 277-299.

Phase Retrieval

Simulations - Hadamard Structure

Hadamard Structure

Figure: Performance in recovering the phase by Hadamard structure

- Optimal transmittance: 50%
- Optimal projections: m = 9n

Simulations - Random

Figure: Performance in recovering the phase by random coded apertures

- Optimal transmittance: 50%
- Optimal projections: m = 9n

Simulations - DFT Pattern

Figure: Performance in recovering the phase by DFT patterns

- Optimal transmittance: 50%
- Optimal projections: m = 6n

Simulations - Blue Noise Pattern

Figure: Performance in recovering the phase by Blue Noise Pattern

- Optimal transmittance: 50%
- Optimal projections: m = 4n

Reconstructions

ICASSP - New Orleans

 ▲ 물 ▶ 물 ੭ ९ 0

 March, 2017
 19 / 22

イロト イポト イヨト イヨト

Crystallography

2 Feasible Modulation

3 Results

Conclusions and Future Work

イロト イロト イヨト イヨト

Conclusion and Future Work

Conclusions

- The STWF algorithm is presented.
- Boolean modulation can be implemented for a coded crystallography system.
- MCMC scheme calculates the optimal truncated parameters.
- Blue noise pattern provides the highest reconstruction quality.

Prospects

- Optimize the coded apertures.
- Implement a real architecture for coded diffraction patterns.

Thanks

Thanks!

High Dimensional Signal Processing Research Group www.hdspgroup.com

Phase Retrieval

ICASSP - New Orleans

March, 2017 22 / 22

- 32

イロト イポト イヨト イヨト