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1-bit Compressed Sensing (CS) of Positive Semi-definite (PSD) Matrix Theorem 1 (Recovery Error Bound for Error-free Measurement)
» Frugal sensing (Mehanna and Sidiropoulos 2013): 1-bit sensing of Toeplitz If the regularization parameter

PSD matrix for spectral estimation and parameter estimation. Cinlog(2n/9)
» 1-bit sensing of covariance matrix for principle subspace estimation and V=2 m

online line spectrum estimation (Chi 2014a,b). with probability at least 1 — 4, we have for r > 5x° the following bound on
» Our work: propose 1-bit CS of PSD matrix via rank-1 measurement matrix recovery error:

and provide more accurate recovery error bound. A Cinrlog(2n/5)  Cok!

X — 3| <3 = :

Measuring via Rank-1 Matrix

Proof idea: triangular inequality [|[X — || < [|[X — S||r + ||S — ||~

» n x nrank-r PSD matrix & = QAQ’: > The first error term: proof idea of Theorem .1.|n (Zhang, Yi, and Jin 2014)
> n x n orthogonal matrix Q. with the aid of Lerr\mma 2 and the decomposition of tangent and normal
> n x ndiagonal matrix A = diag{ )\, ..., \,} with spaces at XJ (Candes and Recht 2009).

M > >N > AN ==X\, =0. » The second error term: Lemma 3.
> Normalized norm: |||z =Y\ = 1.

> Condition number k = \;/ )\, < oc. Numerical Results

» Rank-1 measurement matrix W, = akb,f with independent a; and

bk i N(O, In)- 0.45 ? » — > SEtUp:
» m measured bits y, € {+1,—1} (k =1, ..., m) satisfy (Plan and Vershynin o4l meionrcio > 1000 trials.
2013) o metenoses > Dimension n = 50.
5 T 5 = e =BT ST > Eigenvector: orth(X) with
% vk Wi, B] = 0((Wi, ) = 0(a hy), 5 o ] € Rmx,a(nj
. | | | | Y
» For error-free measurement 0(-) = sign(-). - | xj ~ N(0,1).
; ; ; oostl—————— | > Non-zero eigenvalues:
Equivalence Bet Rank-1 M t and Quadratic M t | _f I A=A/ 207 diwith A = g,
quivalence Between Rank- easurement an uadratic IVMleasuremen Figure 1: E[||S — X|| Figure 2: E[||X — S||£| versus N\, =1, and \ ~ U1, k).
| | versus r. C. (C°P' = (.5) >~ = Cy/nlog(n)/m.
» Quadratic measurement (Chi 2014a,b): . Aleorithm 2:
> Measurement matrix Wy = (a,al — byb’) /2 with independent a, and by ~ N(0,1,). ZZ i Zj e 5 '
> Measured bit y; satisfies Ely|Wy, 3] = 0((W,, X)) = 6((a]Xa, — b/ Xby)/2) T o I v it max tr(XSp,).

X0, X[| =1, [[ X[ <+/r

» Performance metrics:
> Recovery error | X — X||.
> Error in mean ||S — X||£.
> Deviation form mean

~
a1

> Equivalence: 5/( — ﬁ (ak -+ bk) ; Bk — % (ak — bk) — Wk —
(Wi + WI)/2 = (W, E) = (W, 2.
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The PSD Recovery Problem (Penalized Trace Minimization) I S N
(@)r=5 (b) r = 10 IX — S][.

Figure 3: Recovery error versus m.

max —tr(XSp,) + ytr(X),s.t. X = 0, [|X||r < 1,

X
7 7 7 ' 0.14 \ —+— Recovery error
17 m 5 R O REEREERECLEL EERRPPLRTRN SPPEI o o ——&— Deviation from mean
» The empirical mean S,,, = # > e k(Wi + W) = UTU' with orthogonal o Bl R FA T b
matrix U and diagonal matrix T. gorg i\ g .
> 0.1} 0% | | 20
» The closed-form solution S 008 | A R e ean § O
€ 00612 N~ == Emorinmean | i
1 D : ooald o Tsoioi ] 0041
X _ HD,Y(Sm)”F fy(sm)7 If HSmH > /77 0.02-7:7 - k\‘~_________ 0.02}
0 . otherwise : % 10 2;0 30 40
. . . _ 5]
D.(Sm) = U(T — ~1,)TU" is the singular value thresholding operator. (@)m=1x10

Figure 4: Recovery error versus r.

Conclusion

Lemma 1 (Eigendecomposition of mean S = E|y,W|)

-
> =aba » Closed-form solution for PSD matrix recovery problem and more accurate
» D =diag{oy,...,0.,0,...,0} with g, = X\, error bound can be obtained with the proposed rank-1 measurement
ﬂ /\(ZTAQZ) 2 o [ 2 scheme.
0= A Zi | ,0; = \/; 4 NET (the error-free case) » Both analysis and simulation reveal that the recovery is biased but the
] i - - minimum recovery error is achieved at certainty r.
wherez = [z,,...,2z,)" ~ N(0,1,). » Extend the analysis to the case of the noisy measurement and structured

PSD matrix (e.g., Toeplitz matrix) recovery in further research.
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» Error between S = S/||S||r and X (Lemma 3):
S —Z|lr= /> Npdi — 1)2 < & forr > 5k where p = 1/||S||¢
» Deviation of non-zero §; from 1 (Lemma 4): |); — 1| < 5—*:5

» Asymptotic lower bound: lim,_ NG r(%) = T
2
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