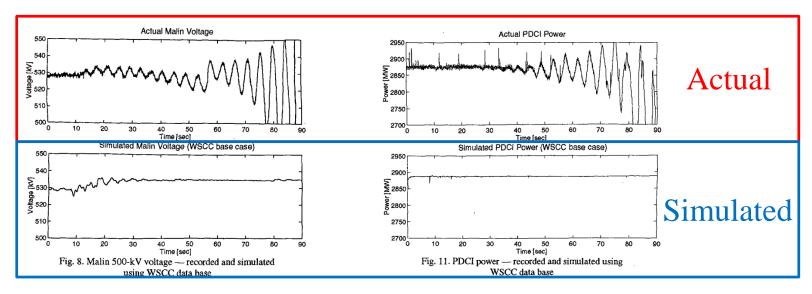


Energy-Based Damping Evaluation for Exciter Control in Power Systems

Luoyang Fang¹, Dongliang Duan², Liuqing Yang¹

 ¹Department of Electrical & Computer Engineering Colorado State University, Fort Collins, CO, USA
²Department of Electrical & Computer Engineering University of Wyoming, Laramie, WY, USA



Outline

- Introduction
- Motivation
- Dynamic Model of Synchronous Generators
- Transient Energy Concept and Its Analogy
- Energy Based Damping Analysis
- Proposed Index for Damping Evaluation
- Simulations
- Summary

Introduction

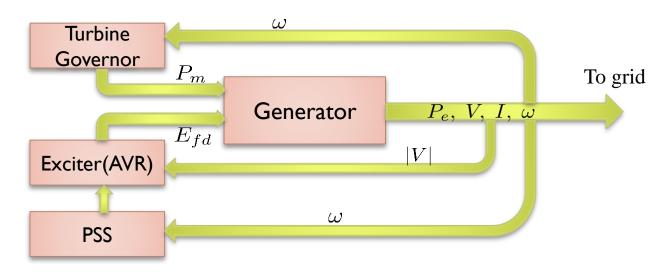
- Low-frequency oscillation
 - In power systems, the low-frequency electromechanical oscillation is a major issue on the reliability and security of modern bulk electric systems.
 - In 1996, two major events of WECC on July, 2 and August 10 demonstrated that unstable low-frequency oscillations could potentially lead to large disturbances or even black out.

Introduction (cont.)

- Two major issues
 - Model problem: The simulation results based on dynamic model CANNOT correctly match the actual situation of the system.
 - Monitoring problem: The online awareness of the dynamic situation of the whole system needs to be enhanced.
- Recent progress and development
 - Wide PMU deployment
 - PMUs provide real-time synchronized raw materials of the entire system
 - Wide area monitoring
 - Mode meters are developed to monitor the modes of low-frequency oscillation online based on synchronized measurements [Zhou-et al'08]
 - Model validation and calibration
 - Signal processing tools are applied in model validation, such as nonlinear Kalman filter, particle filter [Kalsi-et al.'12]

[Zhou-*et al.*'08] N. Zhou, D. J. Trudnowski, J. W. Pierre, and W. A. Mittelstadt, "Electromechanical mode online estimation using regularized robust RLS methods," *IEEE Trans. on Power Systems*, vol. 23, no. 4, pp. 1670–1680, 2008.

[Kalsi-et al.'12] K. Kalsi, P. Du and Z. Huang, "Model calibration of exciter and PSS using Extended Kalman Filter," in *Proceeding of IEEE Power and Energy Society General Meeting*, pp.1-6, San Diego, CA, July 2012

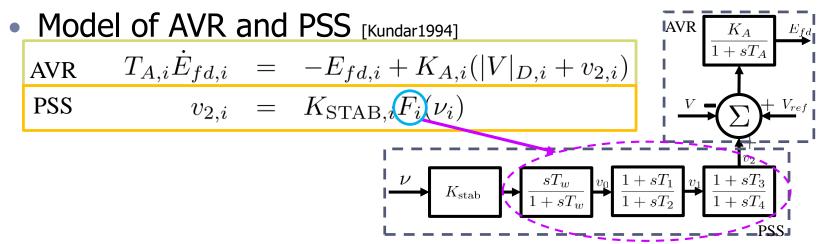

Motivations

- Location of oscillation source
 - To know which parts of the system induce the lightly damped oscillation is essential
 - The traditional damping torque evaluation based on the assumption of single machine infinite bus is hardly applied to multi-machine interconnected system
- Generator control: exciter and power system stabilizer (PSS)
 - Prone to be badly tuned and may contribute negative damping, and leads to lightly damped oscillations
 - Usually calibrated and tuned offline and might not be able to adapt to every operating situation of power systems

The damping contribution of exciter and PSS should be evaluated

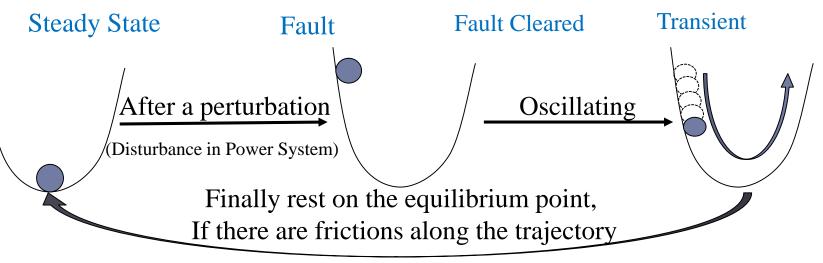
Synchronous Generator and Its Controller

• Overview of synchronous generator and its controllers

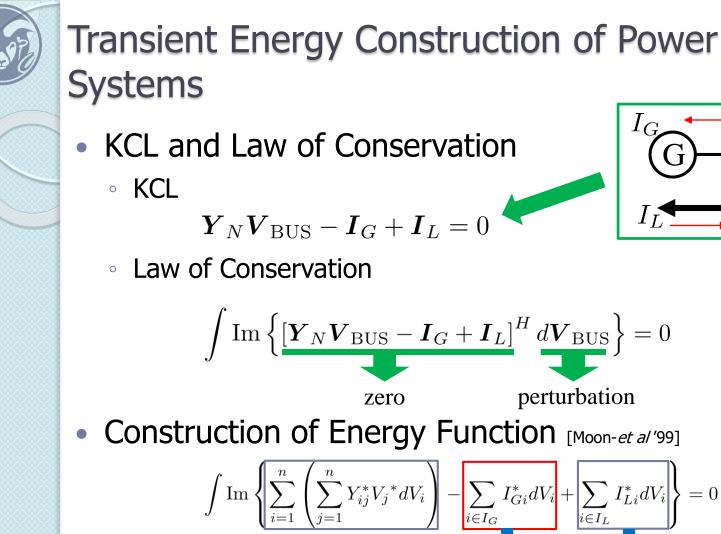


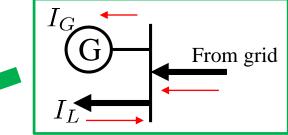
- Exciter: to create magnetic field for generator and directly related to the output voltage
 - Automatic voltage regulator (AVR): to maintain the stability of output voltage during a disturbance
 - Power system stabilizer (PSS): to provide more damping to improve the stability of the system
- Turbine Governor: to maintain the frequency by controlling the mechanical power when the demand of electric power varies
 - Usually not considered in the transient stability analysis, due to its slow response
 - Assumed to be constant

Mathematical Model


- Four-order dynamic model $\nu = \omega - \omega_0$ $\dot{\delta}_i = \omega_0 \nu_i$ Output of Exciter $M_i \dot{\nu}_i = P_{m,i} - P_{e,i} - D_i \nu_i$ $T'_{d0,i} \dot{E}'_{q,i} = E_{fd,i} - E'_{q,i} - (x_{d,i} - x'_{d,i})I_{d,i}$ $T'_{q0,i} \dot{E}'_{d,i} = -E'_{d,i} + (x_{q,i} - x'_{q,i})I_{q,i}$ Field Winding
 - The output power is directly related to terminal voltage and current

Kundur, Prabha. Power system stability and control. Eds. Neal J. Balu, and Mark G. Lauby. Vol. 7. New York: McGraw-hill, 1994.


Transient Energy Concept


• An Analogy of Transient Energy of Power Systems

- Bottom: equilibrium point (the operation point of power systems)
- Perturbation: disturbance in power systems (line loss, gen tripping, etc.)

- The transient energy does NOT depend on the path or trajectory, it only depends on its status, such as speed and level difference
- The energy dissipation (by friction) will indicate the performance of damping
- The damping performance is directly related to the system

- зу 8
- The sum of the transient energy and energy dissipation is always zero

[Moon-*et al*'99] Y.-H. Moon, B.-H. Cho, Y.-H. Lee, and H.-S. Hong, "Energy conservation law and its application for the direct energy method of power system stability," *in Proceeding of IEEE Power Engineering Society Winter Meeting*, vol. 1,1999, pp. 695–700.

Transient energy can flow from one device to the other through the grid

From Generators From Loads

Generator Components

Based on dynamic model of generator

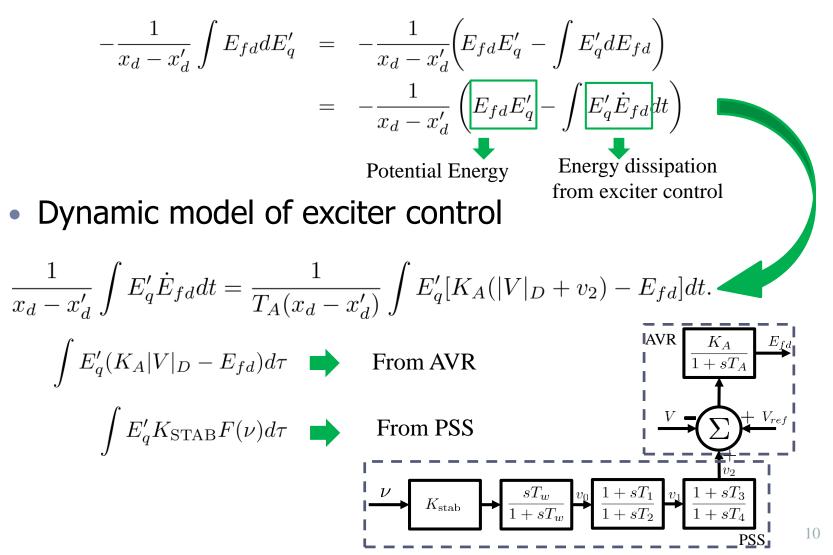
$$-\int \operatorname{Im}[I_{Gi}^* dV_i] = \underbrace{\frac{1}{2}M_i\nu_i^2 - \int P_{mi}d\delta_i + \int D_i\nu_i^2dt}_{\text{Kinetic}} - \underbrace{\int (I_{di}dV_{qi} - I_{qi}dV_{di})}_{\text{Energy}}$$

Energy

Response of rotor field winding [Chen-et al'14]

Energy

Dissipation


[Chen-et al'14] L. Chen, Y. Min, Y. Chen, and W. Hu, "Evaluation of generator damping using oscillation energy dissipation and the connection with modal analysis," *IEEE Transactions on Power Systems*, vol. 29, no. 3, pp. 1393–1402, May 2014.

From Swing Equation

and Controllers

Impact of Exciter Control on Energy Dissipation

Integration by Parts

Damping Analysis for Exciter

- Recall that the PSS is designed to damp the oscillation in the system
- The AVR will introduce negative damping if the energy dissipation of AVR $\int E'_q(K_A|V|_D E_{fd})d\tau$ is negative
- Energy dissipation of PSS $\int E'_q v_2 d\tau$ must be positive and large enough to guarantee

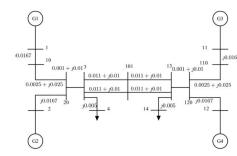
 $\int E'_{q} [K_{A}(|V|_{D} + v_{2}) - E_{fd}] d\tau > 0$

- Then, the generator will provide positive damping to the system (dissipate transient energy)
- Remark
 - The result of damping analysis based on energy is consistent with the one of traditional damping torque without the assumption of single machine infinite bus

Proposed Damping Evaluation Index for Exciter

Summary of Energy Dissipation (Damping) of a generator

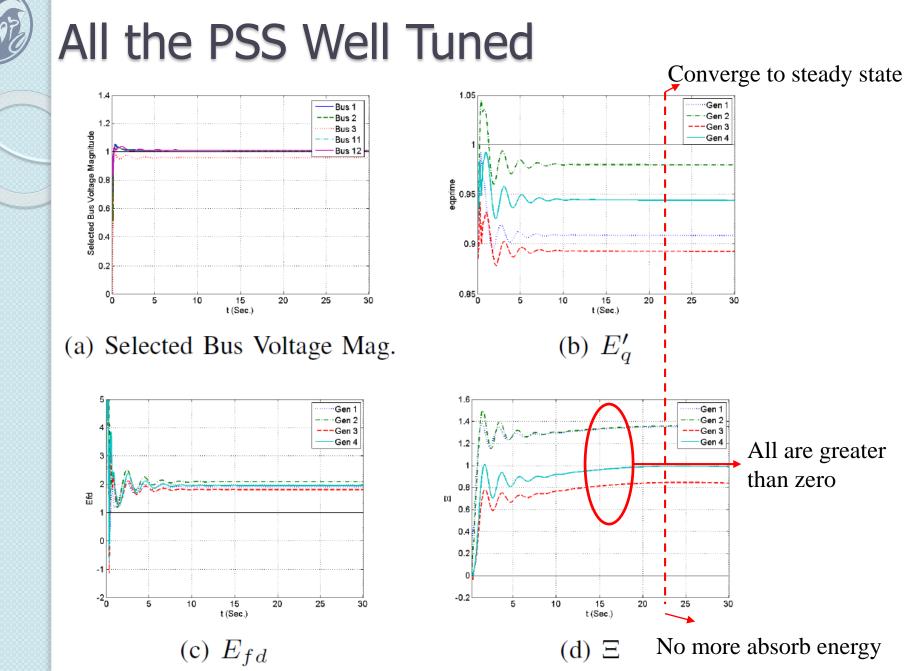
5	$\int D\omega_0 \nu^2 dt$	Due to the damping factor
From Exciter $\frac{1}{x_d - x'_d} \int E'_q \dot{E}_{fd} dt$	$\int \left(\frac{T'_{d0}(\dot{E}'_q)^2}{x_d - x'_d} + \frac{T'_{q0}(\dot{E}'_d)^2}{x_q - x'_q} \right) dt$	Due to the resistance of field wind- ings
	$\int \frac{E'_q[K_A V _D - E_{fd}]}{T_A(x_d - x'_d)} dt$	Due to the dynamic behavior of AVR
	$\int \frac{E_q' K_A K_{\text{STAB}} F(\nu)}{T_A (x_d - x_d')} dt$	Due to the dynamic behavior of PSS


- Proposed Damping Evaluation Index for Exciter
 - by calculating the energy dissipation within a time window during the transient $\int_{1}^{t_b} E' \dot{E} d\tau$

$$\Xi = \frac{\int_{t_a}^{t_b} E'_q E_{fd} d\tau}{x_d - x'_d}$$

• Remark

 The proposed is a general damping evaluation method, which can be applied to any type of exciter controller


Simulations

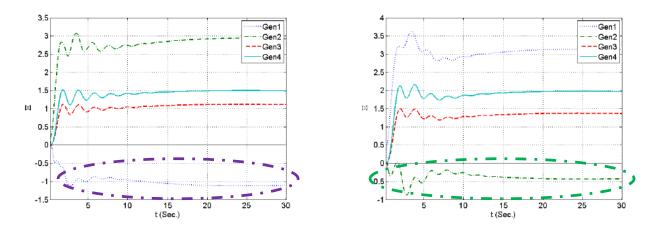
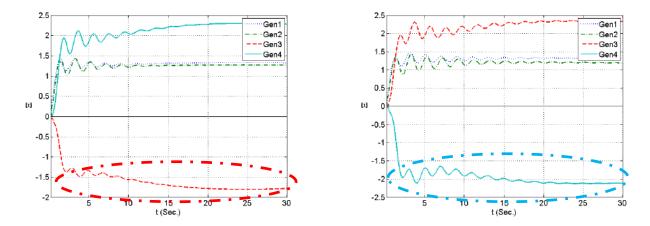
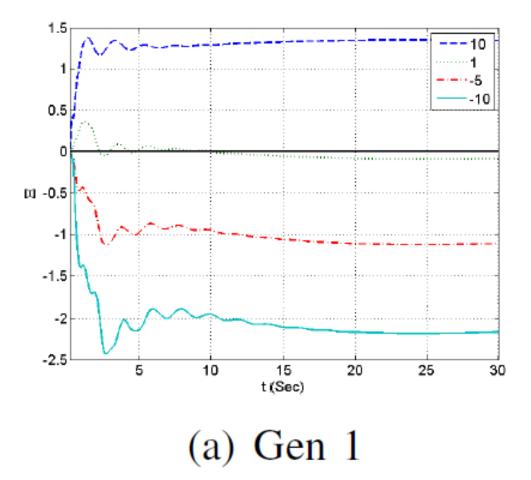

- Classic four-machine-two-area system
- Time-domain dynamic simulations by power system toolbox (PST)
- Event Sequence

Table 1: Event Sequences		
Time (sec.)	Event	
0	simulation starts	
0.1	Three-phase fault on Bus 3	
0.15	Fault cleared near end	
0.2	Fault cleared far end	
30	simulation ends	


- The gain $K_{\rm stab}$ of PSS is badly tuned on purpose to test our proposed index
- The index is calculated by the time window [0.2, 30]

One PSS Badly Tuned


(a) Gen 1 PSS improperly tuned (b) Gen 2 PSS improperly tuned

(c) Gen 3 PSS improperly tuned (d) Gen 4 PSS improperly tuned Correctly indicate which PSS is badly tuned

Different PSS Gains in Gen 1

Typical well tuned gain $K_{\text{stab}} = 10$

Energy dissipation increases with the increment of PSS gains – provide more damping

Summary

- We first analyze the damping performance of each component in the synchronous generator based on energy dissipation
- Then, we propose a damping evaluation index for exciter controller including AVR and PSS, which is verified in simulations
- In addition, the proposed index is only related to internal field voltage and q-axis transient voltage and is independent on the type of AVR and PSS

Transient Energy Function

$$W = \sum_{i \in I_G} \left\{ \frac{1}{2} M_i \Delta \omega_i^2 - \int P_{mi} d\delta_i \right\} + \sum_{i \in I_L} \left\{ \int \left(P_{Li} d\theta_i + Q_{Li} d\ln V_i \right) \right\} - \left(\sum_{i=1}^n \int B_{ii} V_i dV_i + \sum_{i=1}^{n-1} \sum_{j=i+1}^n \int B_{ij} d(V_i V_j \cos \theta_{ij}) \right),$$

$$W + \sum_{i \in I_G} \int D_i \Delta \omega_i^2 dt = \int \operatorname{Im} \left\{ \left[\tilde{\boldsymbol{Y}}_N \tilde{\boldsymbol{V}}_{\text{BUS}} - \tilde{\boldsymbol{I}}_G + \tilde{\boldsymbol{I}}_L \right]^H d\tilde{\boldsymbol{V}}_{\text{BUS}} \right\} = 0$$

$$\frac{dW}{dt} + \sum_{i \in I_G} D_i \omega_i^2 = 0 \Rightarrow \frac{dW}{dt} = -\sum_{i \in I_G} D_i \omega_i^2 < 0$$

[Chen-et al 2013] L. Chen, Y. Min, and W. Hu, "An energy-based method for location of power system oscillation source," *IEEE Transactions on Power Systems*, vol. 28, no. 2, pp. 828–836, May 2013.