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Introduction

Compressed Sensing
• In Compressed Sensing (CS) we take M linear measurements
{yi}Mi=1 of an N-dimensional K -sparse (has at most K nonzero
components) vector x, according to

y = Ax (+w)

•Recovery is possible if A ∈ RM×N satisfies the Restricted Isom-
etry Property (RIP)

•Matrices whose elements are randomly drawn from a
(sub-)Gaussian distribution satisfy RIP with high probability

•CS measurements need to be digitized for further processing

Basic Idea and Contributions
•Quantize CS measurement with 1-bit, send them through AWGN

channel and apply efficient algorithm to recover x from noisy y

•Application: scenarios with scarce bit budget

•The main contributions:

IConsider a novel noise model for noisy 1-bit CS

IApply the known GAMP framework

IProvide closed-form expressions for the nonlinear steps
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1-bit CS measurements corrupted
with AWG noise

Measurement Model
•We obtain M noisy 1-bit CS measurement according to

y = sgn(Ax) + w

•We assume i.i.d. noise vector w where each wi ∼ N (0,σ2
w)

Bernoulli-Gaussian Mixture Prior
We assume an i.i.d. source vector where each component xj of x is
a realization of a Bernoulli-Gaussian distributed random variable

pxj(xj) = γδ(xj) + (1− γ)
1√
2πσ

e−
1

2σ2
x2j ,

with γ being the probability of a zero-value and σ2 being the vari-
ance of the zero-mean Gaussian distribution

GAMP for One-Bit Compressed
Sensing with AWGN

Why GAMP?
•GAMP is very appealing for its efficiency and accurate recon-

struction

• It approximates the computationally intractable high-
dimensional integration involved with calculating

x̂ ≈ E{x | y}

• It allows to model the quantization as a probabilistic channel
with unquantized input and quantized output

• It allows to incorporate measurement noise in the model

The Steps of GAMP
•At t = 0, the algorithm is initialized according to (the far right

values correspond to the Bernoulli-Gaussian mixture prior)

x̂0 = E{x} = 0, v0
x = var{x} = (1− γ)σ2, ŝ0 = 0M×1

•At every iteration t = 1, 2, ... compute the measurement and
estimation updates

vtp = (A • A)vt−1
x vtr =

(
(A • A)Tvts

)−1

p̂t = Ax̂t−1 − vtp • ŝt−1 r̂t = x̂t−1 + vtr • (AT ŝt)

ŝt = F1(y, p̂t, vtp) x̂t = G1(̂rt, vtr ; px)

vts = F2(y, p̂t, vtp) vtx = G2(̂rt, vtr ; px)

•The functions F1(·), F2(·), G1(·) and G2(·) are applied
component-wise and are given by

F1(y , p̂, vp) =
E{z | y} − p̂

vp
G1(r̂ , vr ; px) = E{x | r̂}

F2(y , p̂, vp) =
vp − var{z | y}

v 2
p

G2(r̂ , vr ; px) = var{x | r̂}

•The first and the second moment of z |y and x |r̂ are evaluated
with respect to

pz |y ∝ py |z(· | ·)pz(·) and px |r̂ ∝ g(·; r̂ , vr)px(·)
where z ∼ N (p̂, vp)

• Stop iterating if ‖x̂t − x̂t−1‖2 < ε ‖x̂t‖2 with a small ε > 0
(e.g. ε = 10−2) or when t ≥ tmax

GAMP Operators for I/O Channels
•To compute the functions F1(·) and F2(·) we use the Bayes’ rule

to express conditional pdf as

f (z | y) =
f (z)

p(y)
pw

(
y − sgn(y)sgn(z)

)
•The first and the second moment of z | y are calculated as

E{z | y} = Cy p̂ + (1− Cy) z∗

E{z2 | y} = Cy (vp + p̂2) + (1− Cy) τ ∗z
where Cy is a normalizing constant
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• z∗ and τ ∗z are the first and the second moment of z | y ∗ whose
calculation involves erfcx(x) = erfc(x) exp (x2)

•The functions G1(·) and G2(·) are calculated according to

E{x | r̂} = C ∗ r̂ and E{x2 | r̂} = C ∗
(
r̂ 2σ2

vs
+ vr

)
where C ∗ is a normalizing constant and vs = σ2 + vr

Numerical Results

Simulation Setup
•We averaged our results over 1000 independent realizations of

the source vector x, the sensing matrix A and the AWGN w

• In each simulation we acquire M = 2000 measurements of the
underlying sparse vector of length N = 512

•Each 1-bit CS measurement vector is corrupted with AWG noise,
where the SNR is defined as

SNR = E
{
‖y∗‖2/‖w‖2

2

}
Results
•The gain in terms of MSE for SNRs below 2dB is about 5dB

compared to modeling the noise with robustified activation func-
tion (GAMP with hard information)

• For high SNR this algorithm approaches the limit set by the
GAMP algorithm for noiseless 1-bit CS measurements

Conclusion

•The GAMP algorithm with soft information outperforms (MSE-
wise) the GAMP algorithm that uses hard information

•Exploiting soft information is possible with no additional cost
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