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Introduction

Compressed Sensing

o In Compressed Sensing (CS) we take M linear measurements
{yi}™_ of an N-dimensional K-sparse (has at most K nonzero
components) vector x, according to

y = Ax (+w)

® Recovery is possible if A € RM*N satisfies the Restricted Isom-
etry Property (RIP)

e Matrices whose elements are randomly drawn from a
(sub-)Gaussian distribution satisfy RIP with high probability

® CS measurements need to be digitized for further processing

Basic Ildea and Contributions

e Quantize CS measurement with 1-bit, send them through AWGN
channel and apply efficient algorithm to recover x from noisy y

® Application: scenarios with scarce bit budget
® [ he main contributions:

» Consider a novel noise model for noisy 1-bit CS
» Apply the known GAMP framework
» Provide closed-form expressions for the nonlinear steps
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Measurement Model

e We obtain M noisy 1-bit CS measurement according to
y = sgn(Ax) + w

® \We assume i.i.d. noise vector w where each w; ~ N(O, 05.,)

Bernoulli-Gaussian Mixture Prior
We assume an i.i.d. source vector where each component x; of x is
a realization of a Bernoulli-Gaussian distributed random variable

1 1
px(xj) = 70(x) + (1_7)\/206 202

with v being the probability of a zero-value and ¢ being the vari-
ance of the zero-mean Gaussian distribution

GAMP for One-Bit Compressed

Sensing with AWGN

Why GAMP?

e GAMP is very appealing for its efficiency and accurate recon-
struction

e |t approximates the computationally intractable high-

dimensional integration involved with calculating
X~ E{x|y}

e [t allows to model the quantization as a probabilistic channel
with unquantized input and quantized output

e |t allows to incorporate measurement noise in the model

The Steps of GAMP

o At t = 0, the algorithm is initialized according to (the far right
values correspond to the Bernoulli-Gaussian mixture prior)

X =FE{x} =0, v)=var{x}=(1-9)c% 8 =0uu

® At every iteration t = 1,2, ... compute the measurement and

estimation updates

v; — (Ao Avi ! vi = ((A o A)TVE)
pr=AR"'—vies ! P =8"T1vie(A'S)
§" = Fu(y. p’, V,t,) X' = Gy(F', v py)

v, = Fo(y, B, v,) Vi = GoF', v, pi)

e The functions Fi(:), Fu(:), Gi(-) and Gy(:) are applied

component-wise and are given by

. Eiz|y;—p . .
Fi(y, b, vp) = { ’V } Gi(7, v px) = E{x | 7}
p
. Vp, —Variz | y . A
Fa(y, b vp) = = v2{ 22 Go(P, vi; px) = var{x | 7}
p

e The first and the second moment of z|y and x|F are evaluated
with respect to

Pely X Pyl | -)p(+) and  pp o< g(i 7, vi)pul)
where z ~ N (p, v,)

o Stop iterating if [|Xf — X' Y|, < € [|X||> with a small ¢ > 0
(e.g. € = 1072) or when t >ty

GAMP Operators for 1/0 Channels

® To compute the functions F1(-) and F,(-) we use the Bayes' rule
to express conditional pdf as

f(2)

f(z]y)= 0P (v — sgn(y)sgn(z2))

® The first and the second moment of z | y are calculated as
E{z |y} =Gh+(1-G)z
E{Z’ |y} =G (v, +p°) +(1-C)7;

where C, is a normalizing constant

K=16
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e z* and 7} are the first and the second moment of z | y* whose
calculation involves erfcx(x) = erfc(x) exp (x?)

® The functions Gy(-) and Gy(-) are calculated according to
Poo?
and E{x*|?}=C ( | vr>

where C* is a normalizing constant and v, = 0% + v,

Numerical Results

Simulation Setup

e \We averaged our results over 1000 independent realizations of
the source vector x, the sensing matrix A and the AWGN w

® [n each simulation we acquire M = 2000 measurements of the
underlying sparse vector of length N = 512

e Each 1-bit CS measurement vector is corrupted with AWG noise,

where the SNR is defined as
SNR = E{[ly"||*/]Iw]5}

Results
® The gain in terms of MSE for SNRs below 2dB is about 5dB

compared to modeling the noise with robustified activation func-

tion (GAMP with hard information)

® For high SNR this algorithm approaches the limit set by the
GAMP algorithm for noiseless 1-bit CS measurements

Conclusion

® The GAMP algorithm with soft information outperforms (MSE-
wise) the GAMP algorithm that uses hard information

e Exploiting soft information is possible with no additional cost
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