

Discriminative Probabilistic Framework for Generalized Multi-Instance Learning

Anh T. Pham, Raviv Raich, Xiaoli Z. Fern, Weng K. Wong, and Xinze Guan School of EECS, Oregon State University, Corvallis, OR 97331-5501, USA {phaman,raich,xfern,wong}@eecs.oregonstate.edu and guanxinze@hotmail.com

Multiple-instance learning (MIL)

- Challenges with single-instance learning (SIL):
 - Labeling is time-consuming (for big data)
 - o Difficult to obtain individual labels (privacy or prohibitive labeling costs)
- Multi-instance learning: overcomes above labeling challenges

Example of generalized multi-instance learning

Applications of GMIL

(a) What is the collective activity?

⁽b) What is the event of this video?

Figure 1. Example of images taken from Corel5k dataset. Images are labeled 'positive' w.r.t. the topic 'forest' if the image has more than ten 'tree's segments.

(c) Is this video segment interesting?

Instance annotation in MIL

- Training data: B bags, represented by {(X_b, Y_b)}_{b=1...n_b}
 - X_b is a set of n_b instances for the bth bag {x_{b1}, x_{b2},..., x_{bnb}}
 Each instance x_{bi} ∈ R^d is associated with a label y_{bi} ∈ {0, 1}
 - $\mathbf{Y}_{b} \in \{0, 1\}$ is the bag label for the bth bag
- Goal: Learn a classifier mapping \mathbf{R}^d to {0 1}

Goal

Our goal: To learn the instance level classifier parameter w

Our challenge:

• Jointly learn the desired parameter w along with the nuisance parameter v of the bag labeler function $\phi(n; v)$.

EM for inference

Log-likelihood:

$$\mathbf{L}(\mathbf{Y}_D | \mathbf{X}_D, \mathbf{w}, \mathbf{v}) = \sum_{b=1}^B \log[\sum_{N_b=0}^{n_b} \sum_{\mathbf{y}_b \subset M_b} p(Y_b, N_b, \mathbf{y}_b | \mathbf{X}_b, \mathbf{w}, \mathbf{v})]$$

 $\text{Complete log-likelihood: } \mathbf{L}(\mathbf{Y}_D, \mathbf{N}_D, \mathbf{y}_D | \mathbf{X}_D, \mathbf{w}, \mathbf{v}) = \sum_{b=1} [\log p(Y_b | N_b, \mathbf{v}) + \log p(N_b | \mathbf{y}_b) + \log p(\mathbf{y}_b | \mathbf{x}_b, \mathbf{w})]$

$$\mathcal{Q}(\mathbf{w},\mathbf{v};\mathbf{w}',\mathbf{v}') = \mathcal{Q}_1(\mathbf{w};\mathbf{w}',\mathbf{v}') + \mathcal{Q}_2(\mathbf{v};\mathbf{w}',\mathbf{v}')$$

Surrogate function:

Depend on w only
$$\leftarrow Q_1(\mathbf{w}; \mathbf{w}', \mathbf{v}') = \sum_{b=1}^B \sum_{i=1}^{n_b} \left[p(y_{bi} = 1 | Y_b, \mathbf{X}_b, \mathbf{w}', \mathbf{v}') \mathbf{w}^T \mathbf{x}_{bi} - \log(1 + e^{\mathbf{w}^T \mathbf{x}_{bi}}) \right]$$

Depend on v only $\leftarrow Q_2(\mathbf{v}; \mathbf{w}', \mathbf{v}') = \sum_{b=1}^B \sum_{n=0}^{n_b} \left[p(N_b = n | Y_b, \mathbf{X}_b, \mathbf{w}', \mathbf{v}') \right] \times (Y_b \log \phi(n; \mathbf{v}) + (1 - Y_b) \log(1 - \phi(n; \mathbf{v})))$
 \Rightarrow separate M-step for w, v

8

X_{b1}

 y_{b1}

W

x_{b2}

y_{b2}

E-step **Forward message** $\left(\mathbf{x}_{b1} \right)$ \mathbf{x}_{b2} $(\mathbf{y}_{\mathbf{b}(\mathbf{i+1})})$ $\alpha_i(k) \triangleq p(n_{bi} = k | \mathbf{X}_b, \mathbf{w'})$ (y_{b1}) y_{b2} $\alpha_{i+1}(k) = p(y_{b(i+1)} = 1 | \mathbf{x}_{bi}, \mathbf{w}') \alpha_i(k-1)$ $+ p(y_{b(i+1)} = 0 | \mathbf{x}_{bi}, \mathbf{w}') \alpha_i(k)$ \mathbf{V} (\mathbf{y}_{bi}) (\mathbf{y}_{b1}) (\mathbf{y}_{b2}) $(\mathbf{Y}_{b(i+1)})$ $(\mathbf{y}_{\mathbf{bn}})$ $n_{_{bi}}$ **Backward message** (n_{b2}) $(\mathbf{y}_{\mathbf{b}(\mathbf{i}+1)})$ n $(n_{\rm b})$ $\beta_i(k) \triangleq p(Y_b|n_{bi} = k, \mathbf{X}_b, \mathbf{w}')$ Figure 4. Graphical model to compute instance membership probability $p(y_{bi} = 1 | Y_b, \mathbf{X}_b, \mathbf{w}', \mathbf{v}')$ and probability of the number of $\beta_i(k) = p(y_{b(i+1)} = 1 | \mathbf{x}_{bi}, \mathbf{w}') \beta_{i+1}(k+1)$ positive instances $p(N_b = n | Y_b, \mathbf{X}_b, \mathbf{w}', \mathbf{v}')$. <u>n</u> $+ p(y_{b(i+1)} = 0 | \mathbf{x}_{bi}, \mathbf{w}') \beta_{i+1}(k)$ • b(i+1 $n_{bi} = \sum_{j=1}^{i} y_{bj}$ $n_{b(i+1)} = n_{bi} + y_{b(i+1)}$ $\sum p(n_{bi} = n | Y_b, \mathbf{X}_b, \mathbf{w}', \mathbf{v}') = \frac{\alpha_i(k)\beta_i(k)}{\sum_{b=0}^{n_b} \alpha_i(k)\beta_i(k)}$ $p(y_{bi} = 1 | Y_b, \mathbf{X}_b, \mathbf{w}', \mathbf{v}') = \frac{\pi_1}{\pi_1 + \pi_2}$ E-step 2 E-step 1 $\pi_1 = \sum \alpha_{i-1}(k)\beta_i(k+1)p(y_{bi} = 1 | \mathbf{x}_{bi}, \mathbf{w}') ;$ $p(N_b = n | Y_b, \mathbf{X}_b, \mathbf{w}', \mathbf{v}')$ is obtained for $i = n_b$ $\pi_0 = \sum \alpha_{i-1}(k)\beta_i(k)p(y_{bi} = 0|\mathbf{x}_{bi}, \mathbf{w}')$ 9

M-step: Update w

$$\begin{aligned} \mathcal{Q}(\mathbf{w}, \mathbf{v}; \mathbf{w}', \mathbf{v}') &= \mathcal{Q}_{1}(\mathbf{w}; \mathbf{w}', \mathbf{v}') + \mathcal{Q}_{2}(\mathbf{v}; \mathbf{w}', \mathbf{v}') \\ \mathcal{Q}_{1}(\mathbf{w}; \mathbf{w}', \mathbf{v}') &= \sum_{b=1}^{B} \sum_{i=1}^{n_{b}} [p(y_{bi} = 1 | Y_{b}, \mathbf{X}_{b}, \mathbf{w}', \mathbf{v}') \mathbf{w}^{T} \mathbf{x}_{bi} - \log(1 + e^{\mathbf{w}^{T} \mathbf{x}_{bi}})] \\ \mathcal{Q}_{2}(\mathbf{v}; \mathbf{w}', \mathbf{v}') &= \sum_{b=1}^{B} \sum_{i=1}^{n_{b}} [p(y_{bi} = 1 | Y_{b}, \mathbf{X}_{b}, \mathbf{w}', \mathbf{v}') \mathbf{w}^{T} \mathbf{x}_{bi} - \log(1 + e^{\mathbf{w}^{T} \mathbf{x}_{bi}})] \\ \mathcal{Q}_{2}(\mathbf{v}; \mathbf{w}', \mathbf{v}') &= \sum_{b=1}^{B} \sum_{i=0}^{n_{b}} p(N_{b} = n | Y_{b}, \mathbf{X}_{b}, \mathbf{w}', \mathbf{v}') \times \\ (Y_{b} \log \phi(n; \mathbf{v}) + (1 - Y_{b}) \log(1 - \phi(n; \mathbf{v})))) \\ \mathbf{w}(\mathbf{w}) &= \sum_{b=1}^{B} \sum_{i=1}^{n_{b}} p(y_{bi} = 1 | \mathbf{x}_{bi}, \mathbf{w}) p(y_{bi} = 0 | \mathbf{x}_{bi}, \mathbf{w}) \mathbf{x}_{bi} \mathbf{x}_{bi}^{T} \\ \mathbf{w} &= -\sum_{b=1}^{B} \sum_{i=1}^{n_{b}} p(y_{bi} = 1 | \mathbf{x}_{bi}, \mathbf{w}) p(y_{bi} = 0 | \mathbf{x}_{bi}, \mathbf{w}) \mathbf{x}_{bi} \mathbf{x}_{bi}^{T} \\ \mathbf{w} &= \sum_{b=1}^{B} \sum_{i=1}^{n_{b}} p(y_{bi} = 1 | \mathbf{x}_{bi}, \mathbf{w}) p(y_{bi} = 0 | \mathbf{x}_{bi}, \mathbf{w}) \mathbf{x}_{bi} \mathbf{x}_{bi}^{T} \\ \mathbf{w} &= \sum_{b=1}^{B} \sum_{i=1}^{n_{b}} p(y_{bi} = 1 | \mathbf{x}_{bi}, \mathbf{w}) p(y_{bi} = 0 | \mathbf{x}_{bi}, \mathbf{w}) \mathbf{x}_{bi} \mathbf{x}_{bi}^{T} \\ \mathbf{w} &= \sum_{b=1}^{B} \sum_{i=1}^{n_{b}} p(y_{bi} = 1 | \mathbf{w}_{bi}, \mathbf{w}) p(y_{bi} = 0 | \mathbf{w}_{bi}, \mathbf{w}) \mathbf{w}_{bi} \mathbf{x}_{bi}^{T} \\ \mathbf{w} &= \sum_{b=1}^{B} \sum_{i=1}^{n_{b}} p(y_{bi} = 1 | \mathbf{w}_{bi}, \mathbf{w}) p(y_{bi} = 0 | \mathbf{w}_{bi}, \mathbf{w}) \mathbf{w}_{bi} \mathbf{w}_{bi}^{T} \\ \mathbf{w} &= \sum_{b=1}^{B} \sum_{i=1}^{n_{b}} p(y_{bi} = 1 | \mathbf{w}_{bi}, \mathbf{w}) p(y_{bi} = 0 | \mathbf{w}_{bi}, \mathbf{w}) \mathbf{w}_{bi} \mathbf{w}_{bi}^{T} \\ \mathbf{w} &= \sum_{b=1}^{B} \sum_{i=1}^{n_{b}} p(y_{bi} = 1 | \mathbf{w}_{bi}, \mathbf{w}) p(y_{bi} = 0 | \mathbf{w}_{bi}, \mathbf{w}) \mathbf{w}_{bi} \mathbf{w}_{bi}^{T} \\ \mathbf{w} &= \sum_{b=1}^{B} \sum_{i=1}^{B} \sum_{i=1}^{B} p(y_{bi} = 1 | \mathbf{w}_{bi}, \mathbf{w}) p(y_{bi} = 0 | \mathbf{w}_{bi}, \mathbf{w}) \mathbf{w}_{bi} \mathbf{w}_{bi}^{T} \\ \mathbf{w} &= \sum_{b=1}^{B} \sum_{i=1}^{B} \sum_{i=1}^{B} p(y_{bi} = 1 | \mathbf{w}_{bi}, \mathbf{w}) p(y_{bi} = 0 | \mathbf{w}_{bi}, \mathbf{w}) \mathbf{w}_{bi}^{T} \\ \mathbf{w} &= \sum_{b=1}^{B} \sum_{i=1}^{B} \sum_{i=1}^{B} p(y_{bi} = 1 | \mathbf{w}_{bi}, \mathbf{w}) \mathbf{w}_{bi}^{T} \\ \mathbf{w} &= \sum_{b=1}^{B} \sum_{i=1}^{B} \sum_{i=1}^{B} p(y_{bi} = 1 | \mathbf{w}_{bi}, \mathbf{w}) \mathbf{w}_{bi}^{T} \\ \mathbf{$$

10

M-step: Update **v** (Case 1) $\phi(n; \mathbf{v}) = \begin{cases} v_n & \text{if } n = 0, 1, \dots, m, \\ v_m & \text{if } n > m. \end{cases}$

(Case 2)
$$\phi(n; \mathbf{v}) = \frac{e^{v_0 + n \times v_1}}{1 + e^{v_0 + n \times v_1}}$$

(Case 3)
$$\phi(n; \mathbf{v}) = \mathbb{I}[n \ge v_0]$$

$$\begin{array}{c|c} \underline{\textbf{Case 1}}\\ v_n = \frac{\delta_n}{\delta_n + \tau_n},\\ \delta_n = \sum_{b=1}^B Y_b p(N_b = n | Y_b = 1, \mathbf{X}_b, \theta')\\ \tau_n = \sum_{b=1}^B (1 - Y_b) p(N_b = n | Y_b = 0, \mathbf{X}_b, \theta') \end{array}$$

$$\begin{array}{c|c} \underline{\textbf{Case 2}}\\ \mathbf{v}^{(k+1)} = \mathbf{v}^{(k)} - \eta \times \mathbf{H}_v^{-1} \mathbf{d}_v \Big|_{\mathbf{v} = \mathbf{v}^{(k)}} \end{array}$$

$$\begin{array}{c|c} \underline{\textbf{Case 3}}\\ \min \sum_{b=1}^B [Y_b p(N_b < v_0 | Y_b = 1, \mathbf{X}_b, \theta') + (1 - Y_b) p(N_b \ge v_0 | Y_b = 0, \mathbf{X}_b, \theta')]\\ \tau_n = \sum_{b=1}^B (1 - Y_b) p(N_b = n | Y_b = 0, \mathbf{X}_b, \theta') \end{array}$$

$$\begin{array}{c|c} \underline{\textbf{Case 2}}\\ \mathbf{v}^{(k+1)} = \mathbf{v}^{(k)} - \eta \times \mathbf{H}_v^{-1} \mathbf{d}_v \Big|_{\mathbf{v} = \mathbf{v}^{(k)}} \end{array}$$

$$\begin{array}{c|c} \underline{\textbf{Case 3}}\\ \min \sum_{b=1}^B [Y_b p(N_b < v_0 | Y_b = 1, \mathbf{X}_b, \theta') + (1 - Y_b) p(N_b \ge v_0 | Y_b = 0, \mathbf{X}_b, \theta')] \end{array}$$

$$\begin{array}{c|c} \underline{\textbf{Case 3}}\\ (1 - Y_b) p(N_b \ge v_0 | Y_b = 0, \mathbf{X}_b, \theta') \end{array}$$

$$\begin{array}{c|c} \underline{\textbf{Case 3}}\\ \mathbf{v}^{(k+1)} = \mathbf{v}^{(k)} - \eta \times \mathbf{H}_v^{-1} \mathbf{d}_v \Big|_{\mathbf{v} = \mathbf{v}^{(k)}} \end{array}$$

Real dataset experiments

• Datasets.

- HJA bird song recording, MSCV2 image annotation
- Select some classes as positive and treat remaining as negative
- Bag label is generated with threshold t

• Settings.

- SISL classifier: all instance labels are known. Dummy classifier: classifies instances purely based on label proportions
- CCE: Constructive Clustering Ensemble (SVM-based approach)
 - CCE1: does not take into positive instances count
 - CCE2: does take into positive instances count
- **SORLR1-3:** Implement for 3 cases
- **ORLR:** v_0 is set to 0
- MIMLNC: negative class is considered novel

• Results and Analysis.

- Consider both instance level prediction and bag level predictions
- SORLR outperforms other baseline, especially SORLR3 since it models the data quite well.
- When t is large, most bags are negative. Thus, bag level prediction is high, but instance prediction is low

Conclusions

- A discriminative probabilistic model for generalized multi-instance learning is presented
- An exact and efficient inference framework is proposed
- Experiments show promising results compared to state-of-the-art alternatives