Automated plug-load identification
from high-frequency measurements

Jingkun Gao, Emre Can Kara
Mario Berges

1
INFERLabL
“ || Intelligent Infrastructur e
1] ——————"
v

Carnegie Mellon University

Civil and Environmental Engineering



Motivation
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* More fine level plug-loads meters
are available in market, e.g.,
Belkin’s WeMo, Plugwise,
ThinEco, BOSS Smart Plugs 10
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’ Monltorlng and und.erstandlng the Source: U.S. Energy Information Administration,
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Challenges

* To install and maintain meters in a large scale, how to

keep track of the identify of electrical loads connected to
the meters?

 Manual label is expensive in large buildings and the
loads connected could also change.

« Many applications need to verify the load is consistent
with most recent label

— e.g. direct load control of sensitive equipment
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Research Question

Is it possible to determine what appliance is
connected to a meter simply from
measurements of voltage and current?

What are the representative features that
can help the load identification?
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Objective

 To compare the classification
performance of popularly used features,
on the same dataset.

* To explore the relationship between
classification accuracy and sampling rate,
to better understand the hardware
implementation constraints.
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PLAID Dataset

» 30 kHz for 11 different types across 55
households Appliance Type #of #of

Appliances Instances

% (a) ‘Instantanem‘ls Current o‘f Fridge ove‘r Is Air Conditioner( AC) 19 92
< Y Compact Fluorescent 35 173
£ o Lamp(CFL)
© _500 0‘2 0‘4 ‘10‘6 0‘8 1 Fndge 18 46
(b) Instantaneous Voltage of Fridge over 1Is Halrdryer 3 1 156
S 200 ‘ ‘ ‘ Laptop 38 163
2 0 | Microwave 23 135
s ) | | | | Washing Machine 7 26
) 02 0.4 0.6 08 1 Bulb 25 117
5000 (c)‘Instantaneo‘us Power of | Fridge over‘ Is Vacuum 7 3 5
2INT™ Fan 23 114
g 0 ‘ Heater 9 37
TS 00% 02 04 06 08 1 Total 235 1094

Time (s) ’

« Analysis in this paper will focus on using one
period of steady state of the appliances.



Exploration of Features

* Current waveform

* Real and reactive power (PQ feature)
« Harmonics

* Quantized waveforms

* VI binary images

« PCA for dimension reduction
 Combined features
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Current Waveform
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Real/Reactive Power
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Harmonics

 FFT on instantaneous
power signals

« Take the magnitude of
integer multiples of

fundamental frequency
(120Hz)

« Up to 21st order of
harmonics are used

Carnegie Mellon University

Magnitude
s o 8

()]
T

Power Harmonics of Incandescent Light Bulb

o

0 1 1 1 1 A 1
0 100 200 300 400 500 600 700 800
Frequency (Hz)
0 Power Harmonics of Laptop
o 15T
<
2
=10 1
&0
= A
5 | Jw _
O M’JL\’M\ Mrrdrn LM\/M\ ™ AWJW.L A 1 oAby
0 100 200 300 400 500 600 700 800
Frequency (Hz)

Civil and Environmental Engineering



Down Sampled Waveform

06 Down Sampled Current of Fridge
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VI binary image
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PCA for dimension reduction

* Apply PCA to keep the components which
can explain 99% of variations

Features Original Reduced
dimension dimension

Current 500 3
Quantized 40 1
VI image 256 110
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Previous Work on Features

* Engineered features: real/reactive power [G. Hart
1992], harmonics signals[A. Reinhardt 2012; D.
Srinivasan 2006], current draw[D. Zufferey 2012],
VI trajectory[H. Lam 2007]

« Data driven features: dimension reduction (PCA),
singular vectors (SVD)[H. Lam 2007]

Average accuracy ranges from 85% to 99% by
using different settings and algorithms, on small

experimental setups.
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Classification Strategy

« Classifiers: KNN, GNB, LGC, Decision
Tree, Random Forest, LDA, QDA,
Adaboost

* Training on instances from 54 households
and test on the instances from rest one.

« Use accuracy as the metric

A # of correct predictions
cC =

# of total predictions
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Experiment Results
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2D representation
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Confusion Matrix

AC(1)

CFL(2)

Fan(3)
Fridge(4)
Hairdryer(5)
Heater(6)
Bulb(7)
Laptop(8)
Microwave(9)
Vaccum(10)

Washer(11)

R o e e

Civiland Enwronmental Engineering

1.0
7\ — AC
\ — Fan
05 / Hairdryer
“ \ — Heater
/) Bulb

0.0

-0.5
\\ A /
-1.0
0 100 200 300 400 500

Normalized current signals
of misclassified types




Implementation Feasibility

Down sample the dataset from 30K Hz to 200 Hz and
testing with VI image feature.
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Conclusion

 Combined features perform best across different
classifiers, achieving 86.03% average accuracy
using random forest.

« Sampling rates higher than 4 kHz is feasible to
achieve an accuracy higher than 80%.

* The approach may be also applicable for
aggregated signal by doing subtraction.
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Future Work

« Study how to use the idea of subtraction (signals
before and after events) to apply the VI binary
image feature to aggregated signals.

* For appliances with similar steady states, it may
be useful to look at transients.

 Collect more data and evaluate the methods in a
larger scale.
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Questions?

 PLAID Dataset: http://www.plaidplug.com/

 Source code: https://qgithub.com/jingkungao/PLAID
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