
IMAGE RETRIEVAL BASED ON DEEP CONVOLUTIONAL NEURAL NETWORKS AND
BINARY HASHING LEARNING

Peng Tian-qiang, Li Fang

Henan Institute of Engineering
Department of Computer Science and Engineering

Zhengzhou,China

ABSTRACT

With the increasing amount of image data, the image retrieval
methods have several drawbacks, such as the low expression
ability of visual feature, high dimension of feature, low pre-
cision of image retrieval and so on. To solve these problems,
a learning method of binary hashing based on deep convolu-
tional neural networks is proposed. The basic idea is to add
a hash layer into the deep learning framework and simultane-
ously learn image features and hash functions which should
satisfy independence and quantization error minimized. First,
convolutional neural network is employed to learn the intrin-
sic implications of training images so as to improve the dis-
tinguish ability and expression ability of visual feature. Sec-
ond, the visual feature is putted into the hash layer, in which
hash functions are learned. And the learned hash functions
should satisfy the classification error and quantization error
minimized and the independence constraint. Finally, given an
input image, hash codes are generated by the output of the
hash layer of the proposed framework and large scale image
retrieval can be accomplished in low-dimensional hamming
space. Experimental results on the three benchmark datasets
show that the binary hash codes generated by the proposed
method has superior performance gains over other state-of-
the-art hashing methods.

Index Terms— Image retrieval, Deep convolutional neu-
ral networks, Binary hashing, Quantization error, Indepen-
dence

1. INTRODUCTION

The early image retrieval technology is Text-based Image Re-
trieval (TBIR), and then the Content-based Image Retrieval
(CBIR) technology gradually becomes the mainstream, which
expresses the image content by the low-level features. The
low-level features include local feature descriptor based on
gradient, such as Scale-Invariant Feature Transform (SIFT)
[1], Histogram of Orientated Gradients (HOG) [2] and so on.
Convolutional Neural Networks (CNNs) can obtain the inher-
ent features of an image compared with the hand-crafted fea-
tures, and CNNs have been proven to achieve state of the art

performance in object detection, image classification, and se-
mantic segmentation. Krizhevsky [3] proposed the feature ex-
traction architecture based on CNNs firstly, which achieved a
good result on ImageNet.

Hashing methods are widely used in computer vision, ma-
chine learning, and information retrieval. The hashing meth-
ods can map high-dimensional features of the images into the
compact binary hashing codes. Combined the advantage of
CNNs with hash methods, we propose a method to learn the
binary hash functions based on CNNs. The basic idea is to
introduce hashing layer to CNNs, and learn the image fea-
tures and hash functions simultaneously, and construct hash
functions with the independence and quantization error min-
imized. Compared with other methods, our method has the
following characteristics:

• A hashing layer is introduced to the existing CNNs ar-
chitecture. The binary hash codes generated by the
hashing layer are putted into the Softmax classifier, and
the Softmax loss is one of the optimization objective.

• The hashing layer contains two parts. The first part in-
cludes slice layer, fully-connected layer, activation lay-
er and concat layer. The first part is used to map the
features to continuous codes and generate independen-
t hash functions. The other part includes a threshold
layer, which is used to binarize the continuous codes to
generate binary hash codes, which can be used to cal-
culate the quantization error.

• We analyze the impact of quantization error, and the
error generated by binarizing the continuous values to
binary hash codes is added into the optimization objec-
tive, which helps to get more powerful hash codes.

2. RELATED WORK

Locality Sensitive Hashing (LSH) [4] can be split into two
categories [5]: one is called “original LSH”, which ranks the
original data to speed up the search; the other is called “bina-
ry LSH”, which embeds the high-dimensional data into ham-



ming space and performs a bitwise-operation to find the sim-
ilar objects. The binary hashing methods include unsuper-
vised hashing, semi-supervised hashing and supervised hash-
ing. The unsupervised hashing methods do not take accoun-
t of the label information, including Isotropic hashing [6],
spectral hashing (SH) [7], PCA-ITQ [8]. The semi-supervised
hashing methods take account of the similarity information
partly, including SSH [9]. The supervised hashing method-
s use the label information or the similar point pairs as the
supervised information, including BRE [10], KSH [11].The
objective of these hashing methods is to construct hash func-
tions which can keep the similarity of the original data and
generate the compact binary hashing codes. Three criterions
to measure the hashing functions are proposed in [7]: 1) map-
ping the similar objects in the original space to similar binary
codes in the hamming space; 2) encoding the whole dataset
using less bits; 3) the binary codes can be calculated easily if
a new data is given. The objective of the second condition is
to generate compact binary codes, which means the construct-
ed hashing functions should be independent. The PCA-ITQ
[8] method minimizes the quantization error in the proceed of
constructing hashing functions, and generates binary hashing
codes with higher expression ability.

The methods based on CNNs [12][13][14] have shown
good performance in object detection, image classification,
and so on. The mainstream CNNs models, such as AlexNet
[3], NIN[15], VGG [16] have verified the ability of learning
image feature representation successfully.

As the superiority of CNNs in feature learning and the
hashing methods in computing speed and memory space, the
methods of combined CNNs with hashing have been pro-
posed in recent years. Rongkai Xia et al. [17] proposed a
method with two steps, in which feature extracting and hash
codes learning were separated. To improve the method, Han-
jiang Lai et al.[18] proposed a method which can learn the
features and hashing functions simultaneously using CNNs,
in which the image triplet is used as supervised information,
but the selection of triplet affects retrieval accuracy directly
and needs a lot of work. Kevin Lin et al.[19] also proposed
a method which can learn the features and hashing function-
s simultaneously, in which the label information is used as
supervised information,but it does not consider quantization
error and the independence between the hashing functions.

3. OUR METHOD

Figure 1 shows the CNNs architecture of our method and im-
age label information used as the input. Our architecture in-
cludes three parts: 1) convolutional sub-network, the role of
this part is to learn image features; 2) hashing layer, the role
of this part is to construct hashing functions to get binary hash
codes; 3) loss layer, this layer includes softmax classification
loss and quantization error loss.

3.1. Convolutional sub-network

We adopt VGG [16] model with 16 layers as our basic frame-
work, which includes five large convolutional layers, five
pooling layers, and two fully connected layers. The archi-
tecture of VGG is simple and can extract pretty good feature
for small images. We should adjust the output number of the
convolutional layer according to the image size.

3.2. Hashing layer and optimization objective

The definition of binary hashing function is : given a feature
x ∈ Rm, construct m-dimensional random vectors whose
number is q to form a matrix W ∈ Rq×m, then get the hash
codes (h1, h2, , hq)

T
= (sign(Wx))

T generated by the q
hashing functions.

In this paper, the hashing layer includes slice layer, fully-
connected layer, activation layer, concat layer and threshold-
ing layer. The role of the first four layers is to construct in-
dependent hashing functions; the role of the last layer is to
binarize the continuous values and calculate the quantization
error.

After calculated by the convolutional sub-network, the
feature x is obtained, which is used to imported into the hash-
ing layer. First, x should be divided, if the dimensionality of
x is m and the length of hashing codes is q, then we should
divide x into q slices, denoted as x(i)(i = 1, 2, , q), the di-
mensionality of each slice is m/q.

After calculated by the slice layer, x(i)(i = 1, 2, , q)
should be imported to fully-connected layer respectively,
the output dimensionality of each fully-connected layer is
one-dimensional, the corresponding formula is as follows

fi(x(i)) = Wix
(i) i = 1, 2, ..., q (1)

Matrix Wi ∈ Rdim(x(i))×1 indicates the weight matrix of the
i-th fully-connected layer.

The activation layer adopts double-tangent function
which can restrict the outputs in the range [−1, 1], the corre-
sponding formula is as follows

tanh(v(i)) =
1− eβv

(i)

1 + eβv(i)
i = 1, 2, ..., q (2)

where, v(i) = fi(x
(i)), β is used to control the smoothness.

The double-tangent function is used to approximate the sign
function. The independent hash functions are constructed
with slice layer, in which the weight matrix Wi is learned
only related to the features of each sub-block.

Then, imported to the concat layer, which can merge
one-dimensional output from the q sub-blocks into a q-
dimensional vector, the formula is as follows

s = (tanh(v(1)), tanh(v(2)), ..., tanh(v(q)))
T

(3)



Fig. 1. The architecture of our model

The output of the concat layer is the approximation output of
the hash functions, which is continuous value.

Finally, imported to the thresholding layer, which can bi-
narize the q-dimensional continuous values generated by the
concat layer into {−1, 1}. The formula is as follows

g(s(i)) =

{
1 s(i) > 0

− 1 s(i) < 0
(4)

s(i) indicates the i-th component of the q-dimensional vector
s generated by the concat layer. The output of the threshold-
ing layer is binary hash codes.

Figure 2 shows the optimization objective based on our
CNNs architecture , in which the loss layer includes Soft-
max loss and quantization error loss. When classify using the
output of the activation layer, the Softmax classification error
loss can be generated, denoted by Lsoftmaxloss. On the other
hand, as the hash code is discrete, we should add the quanti-
zation error loss generated by binarizing the continuous value
into discrete value to the objective loss function, the formula
is as follows

Lq =
1

2
∥h− s∥22 (5)

where, h = (g(s(1)), g(s(2)), ..., g(s(q))) indicates the hash
codes generated by the thresholding layer, s indicates the con-
tinuous values generated by the activation layer, the objective
of the loss function is that the outputs of the activation layer
are closed to -1 and 1 as far as possible.

The overall loss function of our architecture can be de-
scribed as

Lloss = Lsoftmaxloss + λLq (6)

λ indicates the weight factor, which decides the importance
of quantization error loss.

After training, given an image as the input, passing into
the convolutional sub-network and hashing layer successive-
ly, we can get the q-bits binary hash codes directly.

4. EXPERIMENT RESULTS AND ANALYSIS

4.1. Experiment settings

To verify the effectiveness of our method, we evaluate the
performance on two image dataset. CIFAR-10 [20] includes
60,000 32×32 color images in 10 classes. NUS-WIDE [21]
includes nearly 270,000 images. Each of these images is as-
sociated with one or multiple labels. We follow the settings in
[22] to use the subset of images associated with the 21 most
frequent labels, where each label associates with at least 5,000
images. We resize images of this subset into 256×256.

We compare the retrieval performance of our method with
other hashing methods, including the unsupervised hashing
methods, ITQ [8]; supervised hashing methods, KSH [11];
the methods based on deep CNNS and hashing, CNNH [17],
improved CNNH [18], DCNNH [19].

In CIFAR-10, we select 10,000 images (1,000 images per
class) as the testing dataset. For the unsupervised hashing
methods, the rest are served as the training dataset. For the
supervised hashing methods, we select 5000 images (500 im-
ages per class) as the testing dataset. In NUS-WIDE, we ran-
domly select 100 images from each of the selected 21 classes
to form the testimg dataset of 2,100 images. For the unsu-
pervised hashing methods, the rest are served as the training
dataset. For the supervised hashing methods, we select 500
images from each of the selected 21 classes to form the train-
ing dataset.

For the methods based on deep learning and hashing, we
directly use the image as input. For the other methods, we rep-
resent the image in CIFAR-10 with a 512-dimensional GIST
vector; and we represent the image in NUS-WIDE with a 500-
dimensional bag-of-words vector. To evaluate the retrieval
performance, we use Mean Average Precision (MAP) as e-
valuation metrics.

We implement the experiment based on the open source
Caffe framework. In all experiments, the weight factor of
quantization loss λ is set as 0.2.



Fig. 2. The architecture of optimized objective of our model

4.2. Experiment analysis

Table 1-2 shows the comparison results of MAP on the two
datasets. Compared with the methods based on hashing and
traditional hand-crafted features, the MAP of our method is
increased by 20%-50%. Compared with the methods based
on CNNS and hashing, the MAP of our method is increased
by 2%-35%. Compared with improved CNNH, our method
uses the label information as the supervised information and
considers the quantization error; compared with DCNNH, our
method considers the quantization error and the independence
of the hash functions.

Table 1. MAP of Hamming ranking w.r.t different numbers
of bits on CIFAR-10

Methods 12bits 24bits 32bits 48bits
Ours 0.838 0.845 0.851 0.855
DCNNH 0.816 0.826 0.829 0.832
Improved CNNH 0.552 0.566 0.558 0.581
CNNH 0.465 0.521 0.521 0.532
KSH 0.303 0.337 0.346 0.356
ITQ 0.162 0.169 0.172 0.175

Table 2. MAP of Hamming ranking w.r.t different numbers
of bits on NUS-WIDE

Methods 12bits 24bits 32bits 48bits
Ours 0.761 0.767 0.771 0.773
DCNNH 0.741 0.748 0.752 0.752
Improved CNNH 0.674 0.697 0.713 0.715
CNNH 0.623 0.630 0.629 0.625
KSH 0.556 0.572 0.581 0.588
ITQ 0.452 0.468 0.472 0.477

In addition, we compare our method with two other ar-
chitectures based on CNNs. The first architecture doesn’t in-
clude the slice layer, thresholding layer and quantization er-
ror , which is similar with the model in [19] and construc-
t hash functions without independence and the quantization
error. The second architecture doesn’t include the threshold-
ing layer and quantization error, which is similar with the im-

proved CNNH in [18] and construct hash functions only with
independence.

Table 3-4 show the comparison results on the two image
datasets. As can be seen from Table 3-4, the second model
only with independence shows a relative increase of 1%-2%
than the first model without independence and quantization
error. Our method shows a relative increase of 1% than the
second model. On the two datasets, the MAP of our method
with 24-bits is higher than the first model with 48-bits. That
means, in order to achieve the same accuracy, the bits number
of our method is shortest. The shorter bits means less occu-
pancy of memory space and faster computing speed, which is
especially effective for large scale image retrieval.

Table 3. MAP of Hamming ranking w.r.t different numbers
of bits on CIFAR-10

Methods 12bits 24bits 32bits 48bits
First architecture 0.8168 0.8266 0.8291 0.8328
Second architecture 0.8251 0.8308 0.8454 0.8488
Ours 0.8385 0.8450 0.8507 0.8556

Table 4. MAP of Hamming ranking w.r.t different numbers
of bits on NUS-WIDE

Methods 12bits 24bits 32bits 48bits
First architecture 0.7413 0.7482 0.7528 0.7560
Second architecture 0.7540 0.7603 0.7644 0.7689
Ours 0.7608 0.7668 0.7710 0.7727

5. CONCLUSION

A method of learning binary hash codes based on CNNs is
proposed in this paper. We use the label information instead
of the image triple as the supervised information, which can
reduce the workload of manual label. In addition, by intro-
ducing independence constraint between the hash functions
and adding quantization error into the loss function, the better
hash functions are gained.

This work was supported by Nature Science Foundation
of China No. 61301232.



6. REFERENCES

[1] D.G.Lowe, “Distinctive image features from
scale-invariant keypoints”. International Journal of
Computer Vision, 2004, vol.60, pp.91-110.
[2] N. Dalal and B. Triggs, “Histograms of oriented
gradients for human detection”. Computer Vision and
Pattern Recognition,2005, pp.886-893.
[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton,
“ImageNet classification with deep convolutional neural
networks”. Advances in neural information processing
systems, 2012, pp.1097-1105.
[4] Datar M, Immorlica N, Indyk P, et al, “Locality
sensitive hashing scheme based on p-stable distributions”. In
Proceedings of the ACM Symposium on Computational
Geometry, 2004, pp.253-262.
[5] Zhang Lei, Zhang Yongdong, Zhang Dongming, and
Tian Qi, “Distribution-Aware Locality Sensitive Hashing”.
19th International Conference On Multimedia Modeling,
2013, pp.395-406.
[6] Kong Weihao and Li Wujun, “Isotropic hashing”.
Advances in neural information processing systems, 2012,
pp.1646-1654.
[7] Yair Weiss, Antonio Torralba, and Rob Fergus,
“Spectral Hashing”. Advances in neural information
processing systems, 2009, pp.1753-1760.
[8] Gong Yunchao, S. Lazebnik, A. Gordo, and F.
Perronnin, “Iterative quantization: A Procrustean approach
to learning binary codes for large-scale image retrieval”.
IEEE Transaction on Pattern Analysis and Machine
Intelligence, 2012, vol.35, pp.2916-2929.
[9] Wang Jun, Kumar S, and Chang Shih-Fu,
“Semi-Supervised hashing for large scale search”. IEEE
Transaction on Pattern Analysis and Machine Intelligence,
2012, vol.34, pp.2393-2406.
[10] Brian Kulis and Trevor Darrell, “Learning to hash with
binary reconstructive embeddings”. Advances in neural
information processing systems, 2009, pp.1042-1052.
[11] Liu Wei, Wang Jun, Ji Rongrong, and Jiang Yugang,
“Supervised hashing with kernels”. Computer Vision and
Pattern Recognition, Providence, 2012, pp.2074-2081.
[12] Ross Girshick, Jeff Donahue, Trevor Darrell, and
Jitendra Malik. “Rich feature hierarchies for accurate object
detection and semantic segmentation”. Computer Vision and
Pattern Recognition, Ohio, Columbus, 2014, pp.580-587.
[13] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef
Sivic, “Learning and transferring mid-level image
representations using convolutional neural networks”.
Computer Vision and Pattern Recognition, 2014,
pp.1717-1724.
[14] Ali Sharif Razavian, Hossein Azizpour, Josephine
Sullivan, and Stefan Carlsson, “CNN features off-the-shelf:
an astounding baseline for recognition”. Computer Vision
and Pattern Recognition, 2014, pp.806-813.

[15] Lin Min, Chen Qiang, and Yan Shuicheng, “Network
in network”. http://arxiv.org/abs/1312.4400, 2013.
[16] Karen Simonyan, and Andrew Zisserman, “Very Deep
Convolutional Networks for Large-Scale Image
Recognition”. http://arxiv.org/abs/1409.1556, 2014.
[17] Xia Rongkai, Pan Yan, Lai Hanjiang, Liu Cong, and
Yan Shuicheng, “Supervised hashing for image retrieval via
image representation learning”. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2014, pp.2156-2162.
[18] Lai Hanjiang, Pan Yan, Liu Ye, and Yan Shuicheng,
“Simultaneous Feature Learning and Hash Coding With
Deep Neural Networks”. Computer Vision and Pattern
Recognition, 2015, pp.3270-3278.
[19] Lin Kevin, Yang Huei-Fang, Hsiao Jen-Hao, and Chen
Chu-Song, “Deep Learning of Binary Hash Codes for Fast
Image Retrieval”. Computer Vision and Pattern Recognition,
2015, pp.27-35.
[20] A.Krizhevsky and G.Hinton, “Learning multiple layers
of features from tiny images”. 2009.
[21] Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li,
Zhiping Luo, and Yan-Tao Zheng, “NUS-WIDE: A
Real-World Web Image Database from National University
of Singapore”. Proceedings of the ACM international
conference on image and video retrieval, 2009, pp.48.
[22] Liu Wei, Wang Jun, Kumar Sanjiv, and Chang Shih-Fu.
“Hashing with graphs”. Proceedings of the 28th International
Conference on Machine Learning, 2011, pp.1-8.


