
Reconstruction of Euclidean Embeddings in Dense Networks
Sarah Costrell1, Subhrajit Bhattacharya2, and Robert Ghrist1,2

(1)Department of Electrical and Systems Engineering, University of Pennsylvania
(2)Department of Mathematics, University of Pennsylvania

Overview

The problem: determining the Euclidean em-
bedding of a dense, planar sensor network.
Assumptions: each sensor has a binary proto-
col to detect neighboring sensors within a fixed
radius, sensors densely distributed
Contributions: an algorithm to identify land-
mark nodes in the network whose Euclidean em-
bedding is “close” to the vertices of an ideal
hexagonal lattice, theoretical bounds on the er-
ror between the reconstructed lattice embedding
and its ground truth embedding
Applications: GPS-free localization, mapping,
environmental monitoring

Pivot Function Definition

Given v1, v2, v3 ∈ V such that dG(v1, v2) = dG(v1, v3) = dG(v2, v3) =
N , define P : V 3 → V such that P (v1, v2; v3) = v ∈ V : dG(v, v1) =
dG(v, v2) = N, bN

√
3c ≤ dG(v, v3) ≤ dN

√
3e. We say v1 and v2 are the

parent points and v3 is the pivot point with respect to v. Note that there
could be many feasible v ∈ V , in which case we select an arbitrary one,
and that denseness guarantees the existence of at least one such v.

Figure 1: The triangular coordinate system for −3 ≤ x ≤ 3,
−3 ≤ y ≤ 3 with several lattice level level-sets shown in differ-
ent colors. On lattice level 3, sides are denoted by rectangular
boxes and corners by discs.

Analytical Results

• Lemma: Let the network G be ε-dense, i.e., for every x ∈ R2, there is at
least one vertex w ∈ V such that r(w) ∈ Bε(x). Then, the N-hop
metric distance is bounded with respect to N and R: If dG(u, v) = N ,
then (R− 2ε)(N − 1) ≤ d(u, v) ≤ RN .

• Proposition: Let ∆l := R
2 + ε(N − 1). Let en be the accumulated error

at a point requiring n parent points to exist before it can be created.
Then for large n, en ≤ ∆l(1.81)n.

Figure 2: Setting up the initial hexagon using the pivot function.

Problem Statement

We compute an approximately distance-preserving embedding
of a dense sensor network into R2. In doing so, we consider
the undirected, unweighted connectivity graph G = (V,E),
where V is the set of nodes corresponding to the set of sensors
and E is the set of all pairs of sensors (v, w) such that the
Euclidean embeddings of v and w are within a fixed distance
R of one another. Our algorithm takes as its inputs a graph G
and a desired highest lattice level H (see Fig. 1) and outputs
a subset of size 1 + 3H(H + 1) of the vertex set V , specifically,
vertices vi such that each its embedding is as close as possible
to the corresponding vertex of an ideal hexagonal lattice.

High-level Algorithm Description

1 Choose a random initial sensor as a landmark node and find
its N-hop neighborhood.

2 Choose a second sensor (landmark node) from the N-hop
neighborhood of the first sensor.

3 Take the intersection of the N-hop neighborhoods of the
first two sensors and choose the third sensor from this
intersection.

4 Use the pivot function to generate the next landmark node
from the previous three (see Figure 2).

5 Continue in a ‘circular’ manner, using previous landmark
nodes to fill out successive lattice levels.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 3: Results of numerical simulation of algorithm on 34,000 vertices with N = 9, R = 0.02, lattice level 3. Left: Fig. generated
using OpenCV with algorithmic output for levels 0 through 3. Center: Points generated by algorithm are plotted in red, corresponding
points ideal lattice points plotted in blue. Right: Contour plot of observed error in Euclidean distance between the algorithmic output
and the ideal lattice points.

Algorithm Pseudocode

Construction of sides for lattice level > 1; Alg refers to points
created by algorithm, indexed as seen in Figure 1.
highestLevel← H . H is the desired highest level
C ← 1 . C is the level currently being built upon
for C < highestLevel, step 1 do

. The following loop builds the side c > 0, x + y = c:
x̄← 0, ȳ ← C . x̄ and ȳ are temporary variables
for i := 0 to i < C, step 1 do

Alg(x̄ + 1, ȳ)← P (Alg(x̄, ȳ),Alg(x̄ + 1, ȳ − 1); Alg(x̄, ȳ − 1))
x̄← x̄ + 1, ȳ ← ȳ − 1

Alg(C + 1, 0)← P (Alg(C, 0),Alg(C, 1); Alg(C − 1, 1))
. Previous line creates corner point

. The following loop builds the side c > 0, x = c:
x̄← C, ȳ ← 0
for i := 0 to i < C, step 1 do

Alg(x̄ + 1, ȳ − 1)← P (Alg(x̄, ȳ),Alg(x̄, ȳ − 1); Alg(x̄− 1, ȳ))
ȳ ← ȳ − 1

Alg(C + 1,−C − 1)←
P (Alg(C,−C),Alg(C + 1,−C); Alg(C,−C + 1))

. The following loop builds the side c < 0, y = c:
x̄← C, ȳ ← −C
for i := 0 to i < C, step 1 do

Alg(x̄, ȳ − 1)← P (Alg(x̄, ȳ),Alg(x̄− 1, ȳ); Alg(x̄− 1, ȳ + 1))
x̄← x̄− 1

Alg(0,−C − 1)← P (Alg(0,−C),Alg(1,−C − 1); Alg(1,−C))
. The following loop builds the side c < 0, x + y = c:

x̄← 0, ȳ ← −C
for i := 0 to i < C, step 1 do

Alg(x̄− 1, ȳ)← P (Alg(x̄, ȳ),Alg(x̄− 1, ȳ + 1); Alg(x̄, ȳ + 1))
x̄← x̄− 1, ȳ ← ȳ + 1

Alg(−C − 1, 0)←
P (Alg(−C, 0),Alg(−C,−1); Alg(−C + 1,−1))

. The following loop builds the side c < 0, x = c:
x̄← −C, ȳ ← 0
for i := 0 to i < C, step 1 do

Alg(x̄− 1, ȳ + 1)← P (Alg(x̄, ȳ),Alg(x̄, ȳ + 1); Alg(x̄ + 1, ȳ))
ȳ ← ȳ + 1

Alg(−C − 1, C + 1)←
P (Alg(−C,C),Alg(−C − 1, C); Alg(−C,C − 1))

. The following loop builds the side c > 0, y = c:
x̄← −C, ȳ ← C
for i := 0 to i < C, step 1 do

Alg(x̄, ȳ + 1)← P (Alg(x̄, ȳ),Alg(x̄ + 1, ȳ); Alg(x̄ + 1, ȳ − 1))
x̄← x̄ + 1

Alg(0, C + 1)← P (Alg(−1, C + 1),Alg(0, C); Alg(−1, C))

Acknowledgements

Authors supported by US DoD contracts FA9550-12-1-0416
and N00014-16-1-2010.

Contact Information
•Author 1: costrell@seas.upenn.edu
•Author 2: subhrabh@math.upenn.edu
•Author 3: ghrist@math.upenn.edu

mailto:costrell@seas.upenn.edu
mailto:subhrabh@math.upenn.edu
mailto:ghrist@math.upenn.edu

