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Overview

The problem: determining the Euclidean em-
bedding of a dense, planar sensor network.
Assumptions: each sensor has a binary proto-
col to detect neighboring sensors within a fixed
radius, sensors densely distributed
Contributions: an algorithm to identify land-
mark nodes in the network whose Euclidean em-
bedding is “close” to the vertices of an ideal
hexagonal lattice, theoretical bounds on the er-
ror between the reconstructed lattice embedding
and its ground truth embedding
Applications: GPS-free localization, mapping,
environmental monitoring

Pivot Function Definition

Given v1, v2, v3 ∈ V such that dG(v1, v2) = dG(v1, v3) = dG(v2, v3) =
N , define P : V 3 → V such that P (v1, v2; v3) = v ∈ V : dG(v, v1) =
dG(v, v2) = N, bN

√
3c ≤ dG(v, v3) ≤ dN

√
3e. We say v1 and v2 are the

parent points and v3 is the pivot point with respect to v. Note that there
could be many feasible v ∈ V , in which case we select an arbitrary one,
and that denseness guarantees the existence of at least one such v.

Figure 1: The triangular coordinate system for −3 ≤ x ≤ 3,
−3 ≤ y ≤ 3 with several lattice level level-sets shown in differ-
ent colors. On lattice level 3, sides are denoted by rectangular
boxes and corners by discs.

Analytical Results

• Lemma: Let the network G be ε-dense, i.e., for every x ∈ R2, there is at
least one vertex w ∈ V such that r(w) ∈ Bε(x). Then, the N-hop
metric distance is bounded with respect to N and R: If dG(u, v) = N ,
then (R− 2ε)(N − 1) ≤ d(u, v) ≤ RN .

• Proposition: Let ∆l := R
2 + ε(N − 1). Let en be the accumulated error

at a point requiring n parent points to exist before it can be created.
Then for large n, en ≤ ∆l(1.81)n.

Figure 2: Setting up the initial hexagon using the pivot function.

Problem Statement

We compute an approximately distance-preserving embedding
of a dense sensor network into R2. In doing so, we consider
the undirected, unweighted connectivity graph G = (V,E),
where V is the set of nodes corresponding to the set of sensors
and E is the set of all pairs of sensors (v, w) such that the
Euclidean embeddings of v and w are within a fixed distance
R of one another. Our algorithm takes as its inputs a graph G
and a desired highest lattice level H (see Fig. 1) and outputs
a subset of size 1 + 3H(H + 1) of the vertex set V , specifically,
vertices vi such that each its embedding is as close as possible
to the corresponding vertex of an ideal hexagonal lattice.

High-level Algorithm Description

1 Choose a random initial sensor as a landmark node and find
its N-hop neighborhood.

2 Choose a second sensor (landmark node) from the N-hop
neighborhood of the first sensor.

3 Take the intersection of the N-hop neighborhoods of the
first two sensors and choose the third sensor from this
intersection.

4 Use the pivot function to generate the next landmark node
from the previous three (see Figure 2).

5 Continue in a ‘circular’ manner, using previous landmark
nodes to fill out successive lattice levels.
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Figure 3: Results of numerical simulation of algorithm on 34,000 vertices with N = 9, R = 0.02, lattice level 3. Left: Fig. generated
using OpenCV with algorithmic output for levels 0 through 3. Center: Points generated by algorithm are plotted in red, corresponding
points ideal lattice points plotted in blue. Right: Contour plot of observed error in Euclidean distance between the algorithmic output
and the ideal lattice points.

Algorithm Pseudocode

Construction of sides for lattice level > 1; Alg refers to points
created by algorithm, indexed as seen in Figure 1.
highestLevel← H . H is the desired highest level
C ← 1 . C is the level currently being built upon
for C < highestLevel, step 1 do

. The following loop builds the side c > 0, x + y = c:
x̄← 0, ȳ ← C . x̄ and ȳ are temporary variables
for i := 0 to i < C, step 1 do

Alg(x̄ + 1, ȳ)← P (Alg(x̄, ȳ),Alg(x̄ + 1, ȳ − 1); Alg(x̄, ȳ − 1))
x̄← x̄ + 1, ȳ ← ȳ − 1

Alg(C + 1, 0)← P (Alg(C, 0),Alg(C, 1); Alg(C − 1, 1))
. Previous line creates corner point

. The following loop builds the side c > 0, x = c:
x̄← C, ȳ ← 0
for i := 0 to i < C, step 1 do

Alg(x̄ + 1, ȳ − 1)← P (Alg(x̄, ȳ),Alg(x̄, ȳ − 1); Alg(x̄− 1, ȳ))
ȳ ← ȳ − 1

Alg(C + 1,−C − 1)←
P (Alg(C,−C),Alg(C + 1,−C); Alg(C,−C + 1))

. The following loop builds the side c < 0, y = c:
x̄← C, ȳ ← −C
for i := 0 to i < C, step 1 do

Alg(x̄, ȳ − 1)← P (Alg(x̄, ȳ),Alg(x̄− 1, ȳ); Alg(x̄− 1, ȳ + 1))
x̄← x̄− 1

Alg(0,−C − 1)← P (Alg(0,−C),Alg(1,−C − 1); Alg(1,−C))
. The following loop builds the side c < 0, x + y = c:

x̄← 0, ȳ ← −C
for i := 0 to i < C, step 1 do

Alg(x̄− 1, ȳ)← P (Alg(x̄, ȳ),Alg(x̄− 1, ȳ + 1); Alg(x̄, ȳ + 1))
x̄← x̄− 1, ȳ ← ȳ + 1

Alg(−C − 1, 0)←
P (Alg(−C, 0),Alg(−C,−1); Alg(−C + 1,−1))

. The following loop builds the side c < 0, x = c:
x̄← −C, ȳ ← 0
for i := 0 to i < C, step 1 do

Alg(x̄− 1, ȳ + 1)← P (Alg(x̄, ȳ),Alg(x̄, ȳ + 1); Alg(x̄ + 1, ȳ))
ȳ ← ȳ + 1

Alg(−C − 1, C + 1)←
P (Alg(−C,C),Alg(−C − 1, C); Alg(−C,C − 1))

. The following loop builds the side c > 0, y = c:
x̄← −C, ȳ ← C
for i := 0 to i < C, step 1 do

Alg(x̄, ȳ + 1)← P (Alg(x̄, ȳ),Alg(x̄ + 1, ȳ); Alg(x̄ + 1, ȳ − 1))
x̄← x̄ + 1

Alg(0, C + 1)← P (Alg(−1, C + 1),Alg(0, C); Alg(−1, C))
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