Electrical Engineering Department Electronics ■■■■ Computers Communications

A HIGHLY PARALLEL CODING UNIT SIZE **SELECTION FOR HEVC**

Liron Anavi, Avi Giterman, Maya Fainshtein, Vladi Solomon, and Yair Moshe

Signal and Image Processing Laboratory (SIPL)

Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion – Israel Institute of Technology

Introd	llict	INN
	IUGU	

Serial CU Size Selection

(Fan et al., 2014)

Results	

- The High Efficiency Video Coding (HEVC) provides a substantial improvement in coding efficiency over previous standards
- HEVC employs a quad-tree based image partitioning
 - Each frame is divided into coding tree units (CTUs, analogous to macroblocks in previous standards)
 - Each CTU can be recursively further divided into four smaller quadratic blocks called coding units (**CU**s)
 - From up to 64x64 down to 8x8

- Depth of search for the encoded CTU is determined by similarity to adjacent CTUs
- Adjacent CTUs are divided into 2 groups: $\alpha = \{A, B, C, I\}, \beta = \{D, E, F, H, G\}$

Depths are checked in neighboring CTUs only in CUs that are in a small strip of size *R* around the CTU being evaluated

- Number of depths adopted in the strip determine a "similarity level"
- The "similarity level" determines the number of depths checked for the encoded CTU

Similarity level	Depths checked	Group β used?
low	3	no
medium-low	2 or 3	no
medium-high	1 or 2 or 3	yes
high	1 or 2	yes

		(Fan et al., 2014)		proposed	
Class	Sequence	BD-rate	ΔΤ	BD-rate	ΔΤ
		[%]	[%]	[%]	[%]
B	BQTerrace	0.63	-41.70	3.31	-66.14
С	BasketballDrill	1.37	-38.19	0.80	-61.30
	BQMall	1.00	-38.31	1.95	-59.08
	PartyScene	0.16	-32.27	1.18	-56.41
	RaceHorses	0.50	-30.88	0.59	-55.36
D	BasketballPass	0.52	-34.74	2.45	-52.83
	BQSquare	-0.10	-27.63	2.03	-54.30
	BlowingBubbles	0.36	-25.29	1.59	-54.54
	RaceHorses	0.41	-24.26	0.98	-52.76
	Average	0.54	-32.58	1.65	-56.99

Results of the proposed CU size selection method compared with (Fan et al., 2014). For each method, change in coding performance in BD-rate (Bjontegaard, 2001), and change in serial coding time ΔT , are given compared to the HM16.2 reference software. Results are measured on sequences recommended by the JCT-VC HEVC committee in class B (1920x1080), C (832×480) and D (416×240).

- **Problem:** HEVC encoding incurs a high computational complexity
- **Possible solution:** Use a graphics processing unit (GPU) for acceleration
- GPU is a highly parallel, powerful, and cost-effective processing unit, that is very common nowadays

Previous Works

- Most previous works on HEVC parallelization offload only motion estimation to the GPU
 - Further acceleration is required
 - CU size selection becomes a major bottleneck
- Most fast CU size selection algorithms use data dependency between neighboring CUs

Proposed CU Size Selection

- A parallel scheme based on the serial scheme described above
- Does not depend on any data from other CUs in the same frame
 - Allows high parallelism at the CTU level
- A change to groups α and β : $\alpha = \{E, F, I, I\}, \beta = \{G, H, J, K, L, M, N\}$

Proposed method

HM16.2 reference software

CU size selection of the proposed method vs. the HM16.2 reference software for the sequence RaceHorses, frame #224. Black lines denote CU partitioning and red lines denote TU partitioning. For one CTU in the frame, I CUs are marked in orange and P CUs are marked in blue. Partitioning results of both techniques are only partly similar but both adapt to image texture.

• A new problem: These dependencies limit **GPU** parallelization capability

Major Contribution

- A fast CU size selection method that allows utilization of the **high parallel processing** capability of many-core processors, such as a GPU
 - **Does not depend on any data from** other CUs in the same frame

- Using only data from previous frames decreases correlation with neighboring CTUs
- Compensate for the decrease in CTU correlation by adding information from more CTUs - *J*, *K*, *M*, *L*, *N*
- Double weight is given to the collocated CTU *I* due to its highest correlation with the encoded CTU
- Same "similarity level" classification as described above
 - But now higher likelihood for high or medium-high similarity level \rightarrow less depths checked

Conclusions

- A fast, highly parallel CU size selection method for HEVC
- Suitable for implementation on a many-core processor, such as a GPU
- Parallelism is achieved by removing dependencies in the same frame
- The proposed method achieves comparable coding efficiency and running times compared with counterpart serial methods that limit parallelism, even when executed in a serial manner