

NANYANG ECHNOLOGICAL SINGAPORE

Nguyen Duy Hai¹, Santi Peksi¹, Rishabh Ranjan³, Jianjun He², Boon Siang Tan⁴, Rishabh Gupta¹, Woon-Seng Gan¹; ¹School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore; ²Maxim Integrated, San Jose, United States; ³Immerzen Labs Pte. Ltd., Singapore; ⁴Sivantos Pte. Ltd, Singapore

Motivation

Individualized Head Related Transfer Function (iHRTF) "One's unique audio imprint"

With generic HRTF Reproduce wrong or mismatched audio cues where brain could not relate to trick a person's brain into a "being the real situation, resulting the sound there" auditory illusion with accurate to be perceived inside the head or front-back confusions

With iHRTF Reproduce the exact audio cues that

directional perception and externalized sound

"Existing HRTF individualization techniques such a *acoustical* measurements in anechoic chamber, anthropometric measurements, or listening and evaluation either require **tedious** measurement, **training** or result in **degraded** performance"

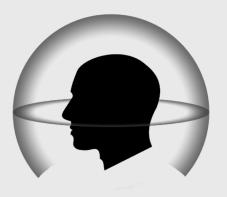
This motivates us to develop a technique that:

Real-time processing

continuous moveme with recorded direction automatically

Easy setup for in-situ measurement

microphone, loud soundcard and VR/AR headset. That's all you need for the in-situ HRTF measurement.


Accurate measurement

with lov error and good consistency conventional static method.

High Resolution

Obtain HRTF at fine resolution up to 1 degree, providing perception smoother for dynamic source rendering.

Immersive/Interactive 3D sound

Personalized HRTFs create the most immersive and interactive 3D sound used in multimedia, VR/AR applications.

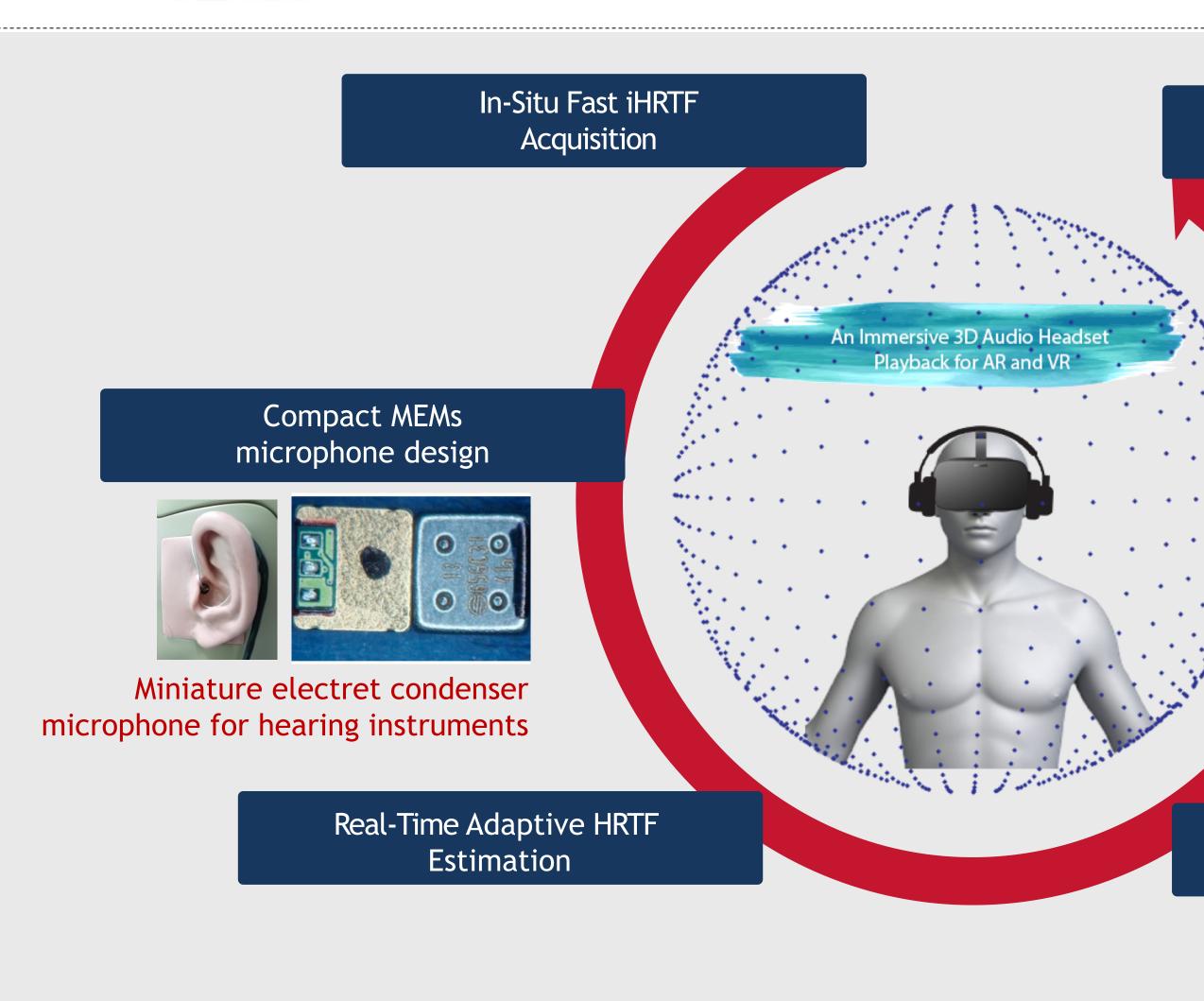
Natural Sound Playback

the patented (US 9,357,282), 3D audio headphones to enhance the sensation of "being there".

Reference and Acknowledgment

References

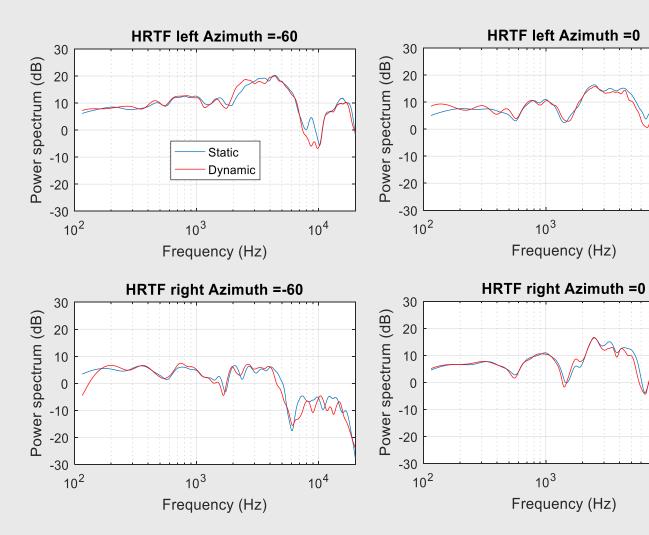
- 1. J. He, R. Ranjan, and W. S. Gan, "Fast continuous HRTF acquisition with unconstrained movements of human
- subjects," in Proc. ICASSP, Shanghai, China, Mar. 2016, pp. 321-325. 2. R. Ranjan, J. He, and W. S. Gan, "Fast Continuous Acquisition of HRTF for Human Subjects with Unconstrained Random Head Movements in Azimuth and Elevation " AES Conference on Headphone Technology, Aalborg, Denmark, 2016 Aug 24-26.
- 3. K. Sunder, J. He, E. L. Tan, and W. S. Gan, "Natural sound rendering for headphones: Integration of signal processing techniques," IEEE Sig. Process. Mag., vol. 32, no. 2, Mar 2015, pp. 100-113. 4. J. He, E. L. Tan, and W. S. Gan, "Primary-ambient extraction using ambient spectrum estimation for immersive spatial
- audio reproduction," IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 23, no. 9, pp. 1430-1443, Sept. 2015. 5. R. Ranjan, and W. S. Gan. "Natural listening over headphones in augmented reality using adaptive filtering techniques."
- IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP) 23.11 (2015): 1988-2002. 6. K. Sunder, E. L. Tan, and W. S. Gan, "Individualization of binaural synthesis using frontal projection headphones," J.
- Audio Eng. Soc., vol. 61, no. 12, pp. 989-1000, Dec. 2013.


Acknowledgement

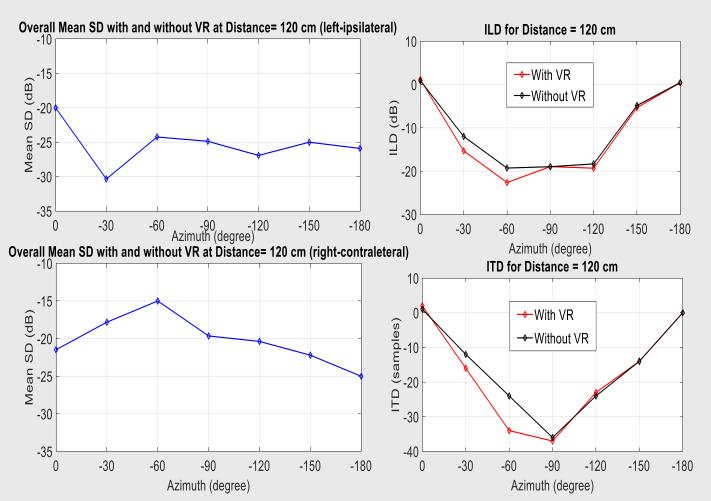
We would like to thank Facebook, Inc. and Sivantos Pte. Ltd. for their generous donation of Oculus Rift and the binaural microphones, respectively.

AN IMMERSIVE 3D AUDIO HEADSET FOR VIRTUAL AND AUGMENTED REALITY

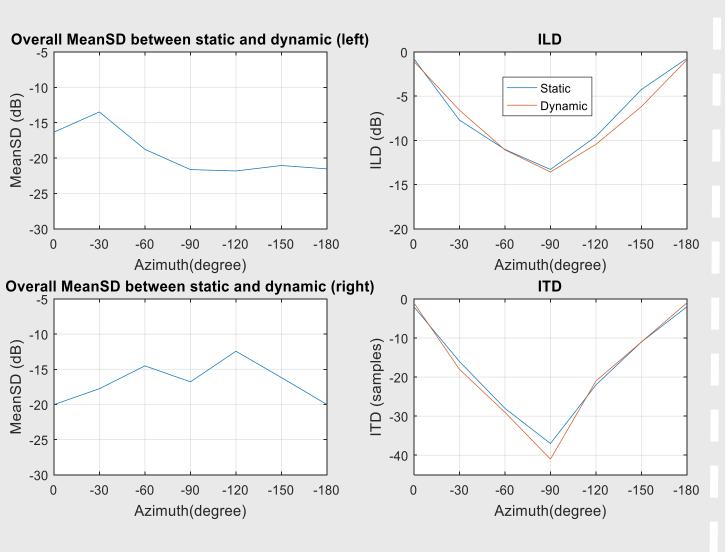
Integration of Acquisition and Rendering



Results


Comparison between standalone Head Tracker and VR Headgear

• HRIR/HRTF for HATO aligned, az=0,-60, el=0 With and Without VR HRTF-left ipsilateral Azimuth = -60 Dis=120 HRTF-left ipsilateral Azimuth = 0 Dis=120 -With VR -Without VR Frequency (Hz) Frequency (Hz) HRTF-right contrateral Azimuth= -60 Dis=120 HRTF-right contrateral Azimuth= 0 Dis=120 Frequency (Hz) Frequency (Hz)

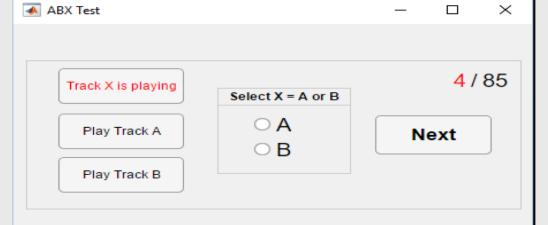

• HRIR/HRTF for HATO aligned, az=0,-60, el=0 Static and Dynamic

• Overall Mean SD, ILD, ITD at 120cm, variable az With and Without VR

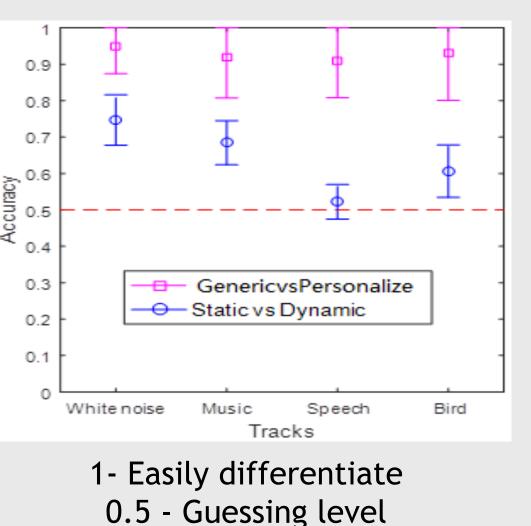
Overall Mean SD, ILD, ITD at 120cm, variable az Static and Dynamic

Real-Time Rendering (tracking of human head)

Spatial Audio Reproduction Over Patented Headphone


> US PATENT 9,357,282 Multi emitter Structure

Enhanced Interpolation and Distance Rendering


T.

Subjective Performance

ABX test further confirmed our objective **95%** results. identification accuracy for Generic vs Individualized; and 50-70% identification accuracy for Static vs Dynamic, which indicates that our measured HRTF is almost indifferentiable from conventional static methods.

Subjective Evaluation ABX

ACQUISITION Hardware Microphone

Microphone placement Head Tracker Sp

Software

No of Grid in **Frontal Direction**

Excitation Signal Length of acquir impulse response **Recording Durat**

Plugins

RENDERING Hardware

Patented Headphone

Software

Rendering Upda Rate Interpolation

Head Tracking S

Playback Scenes

DATA ANALYT

HRIR Accuracy

Head movement pattern

Degree of transit

Specification

	Miniature electret condenser microphone for hearing instruments Deviation between left and right < 1dB Sensitivity @1khZ : 32(+/- 3) : dB, re.1V per Pascal Size: 3.55 x 3.55 x 1.27mm
	1-2mm into the ear canal
eed	50 Hz
ons	Azimuth [-60:5:60] Elevation [-30:10:30] Distance 1 m
al	White Noise
red se	600 samples @ 48 kHz
tion	90-180 secs
	 Real-Time HRIR Estimation Adaptive NLMS with variable step size HRIR Final Selection based on MSE Real-time Visual Feedback of movements Automatic saving of audio/head movement/HRIR data
	US PATENT 9,357,282 "Listening device and accompanying signal processing method"
te	50 Hz
	To 1 degree, Linear using Triangulation method
peed	90 Hz
S	 Single Static Sound Source Multiple Static Sound Sources Moving Sound Sources
<u>ICS</u>	
	MSE of ipsilateral and contralateral ear at each azimuth and elevation
	6 Degree of Freedom (DoF) X Axis Pitch X Axis Left/Right Y Axis Yaw Y Axis Up/Down Z Axis Roll Z Axis Front/Back
tion	Head and Torso Aligned (roll variation between head and torso < 2 degree) Head and Torso Not Aligned (roll variation

between head and torso < 6 degree)