
3.   Variational Bayesian Inference

Since p(𝚯|𝐲) cannot be calculated in closed form, the standard

mean field approximation that factorizes q  𝐱𝛾 , 𝐬𝛾 = q  𝐱𝛾 q 𝐬𝛾

could be used. However this is a unimodal distribution [1] and,
therefore, not a good approximation of the true posterior
distribution. Since the pairs { 𝐱𝛾 , 𝐬𝛾} are strongly correlated (recall

that 𝑥𝛾𝑖 =  𝑥𝛾𝑖𝑠𝛾𝑖), we treat them as a unit, hence we use the

factorization

and utilize the following mean field approximation

Obtaining q  𝐱𝛾 , 𝐬𝛾

Using the Kullback-Leibler criterion and the mean field factorization
presented above, we have

To compute the explicit expression for the above posterior we

separate the derivations for q 𝑠𝛾𝑖 and q(  𝑥𝛾𝑖|𝑠𝛾𝑖).

The distributions q 𝑠𝛾𝑖 = 0 and q 𝑠𝛾𝑖 = 1 can be obtained by

marginalization. Defining

we have

It can be shown that the conditional distributions q( 𝑥𝛾𝑖|𝑠𝛾𝑖) for

𝑠𝛾𝑖 = {0,1} are both Gaussians of the form

with

Finally, we can express the posterior as

Furthermore,

Obtaining q(𝐡)

Notice that we assume a degenerate distribution on q 𝐡 , which
leads to the point estimate for 𝐡

constrained to ℎ𝑗 ≥ 0,  𝑗 ℎ𝑗 = 1.

We can efficiently solve this minimization problem with the ADMM
method in [2].

Final image estimation

Once the estimate of the blur,  𝐡, has been obtained, a non-blind
deconvolution algorithm is used to recover an estimation of the
original sharp image by solving the problem

using the fast iterative method in [2].

1. Introduction

Blind image deconvolution (BID) aims at retrieving the original
sharp image 𝐱 from a blurry and noisy observation 𝐲.

where 𝐱 denotes the original image and 𝐇 is the convolution matrix
associated with the unknown blur kernel 𝐡.

We formulate the BID problem in the filter space, creating a set of 𝐿
pseudo-observations
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4.   Blind Deconvolution Algorithm

We embedded the blur estimation into a multiscale scheme.

Once we estimate  𝐡, we use a non-blind deconvolution algorithm
to estimate the original sharp image.

2.   Bayesian Modeling

Observation model (in the filter space)

Prior model

We impose a Spike-and-Slab prior on each pixel 𝑥𝛾𝑖

Unfortunately, variational inference with this prior is intractable.

However, we then rewrite 𝑥𝛾𝑖 as the product of a Gaussian zero-

mean random variable  𝑥𝛾𝑖 and a Bernoulli random variable 𝑠𝛾𝑖.

and redefine the prior on the two components of 𝑥𝛾𝑖 as

where 𝑠𝛾𝑖 ∈ 0,1 , which is tractable.

Joint probability distribution

With all the above, we have

5. Experimental Results

Test were run on a set of 4 test images with the 6 blur kernels.

𝜷𝚪 = 5000, its real value, 𝜶𝚪, 𝝅𝚪 were selected by a grid search.
We used 2 high-pass filters: 𝑓1 = [1, −1] and 𝑓2 = [1, −1]T for the
blur estimation. For the final image reconstruction, we also use the
second order derivative filters 𝑓3 = [−1,2, −1], 𝑓4 = [−1, 2, −1]T

and 𝑓3 = [1, −1; −1,1]. Comparison with the same settings was
carried out with the method in [2].
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Notice that {𝐱𝛾}𝛾=1
𝐿 should be sparse since they represent high-

pass filtered instances of the original image.

We develop a Blind Image Deconvolution method that
• uses Bayesian Modeling and Variational Inference
• utilizes the Spike-and-Slab prior to impose sparsity
• is more robust against noise
The variational inference we propose
• is more accurate than the standard mean field variational

approximation
• is much more efficient than MCMC

This is a truly sparse prior: 𝑥𝛾𝑖 is exactly 0 with probability 1 − 𝜋𝛾.


