SPIKE-AND-SLAB VARIATIONAL INFERENCE FOR BLIND IMAGE DECONVOLUTION

Juan G. Serra¹, Javier Mateos¹, Rafael Molina¹, Aggelos K. Katsaggelos²

Contact email: jmd@decsai.ugr.es

¹Departamento de Ciencias de la Computación e Inteligencia Artificial, Universidad de Granada, Spain. ²Electrical Engineering and Computer Science Department. Northwestern University, Evanston, IL, USA.

1. Introduction

Blind image deconvolution (BID) aims at retrieving the original sharp image \mathbf{x} from a blurry and noisy observation \mathbf{y} .

y = Hx + n

where \mathbf{x} denotes the original image and \mathbf{H} is the convolution matrix associated with the unknown blur kernel \mathbf{h} .

```
We formulate the BID problem in the filter space, creating a set of L pseudo-observations
```

```
\mathbf{y}_{\gamma} = \mathbf{F}_{\gamma}\mathbf{y} = \mathbf{H}\mathbf{F}_{\gamma}\mathbf{x} + \mathbf{F}_{\gamma}\mathbf{n} = \mathbf{H}\mathbf{x}_{\gamma} + \mathbf{n}_{\gamma}
```

3. Variational Bayesian Inference

Since $p(\Theta|\mathbf{y})$ cannot be calculated in closed form, the standard mean field approximation that factorizes $q(\tilde{\mathbf{x}}_{\gamma}, \mathbf{s}_{\gamma}) = q(\tilde{\mathbf{x}}_{\gamma})q(\mathbf{s}_{\gamma})$ could be used. However this is a unimodal distribution [1] and, therefore, not a good approximation of the true posterior distribution. Since the pairs $\{\tilde{\mathbf{x}}_{\gamma}, \mathbf{s}_{\gamma}\}$ are strongly correlated (recall that $x_{\gamma i} = \tilde{x}_{\gamma i} s_{\gamma i}$), we treat them as a unit, hence we use the factorization

$$q(\mathbf{x}_{\gamma}, \mathbf{s}_{\gamma}) = \prod_{\gamma=1}^{L} \prod_{i=1}^{N} q(\tilde{x}_{\gamma i}, s_{\gamma i})$$

and utilize the following mean field approximation

4. Blind Deconvolution Algorithm

Algorithm 1 Blur estimation algorithm

```
Require: \mathbf{y}_{\Gamma}, \boldsymbol{\beta}_{\Gamma}, \boldsymbol{\alpha}_{\Gamma}, \boldsymbol{\pi}_{\Gamma}, and initial values for \mathbf{h}^{0}, and \langle \mathbf{x}_{\Gamma} \rangle^{(0)}.

Set k = 0.

repeat

Update \mu_{x_{\gamma i}}^{(k)}, \rho_{\gamma}^{(k)}, and \omega_{\gamma i}^{(k)}, \forall \gamma, \forall i.

Update \langle x_{\gamma i} \rangle and \langle x_{\gamma i}^{2} \rangle, \forall \gamma, \forall i.

Update \mathbf{h}^{(k+1)}.

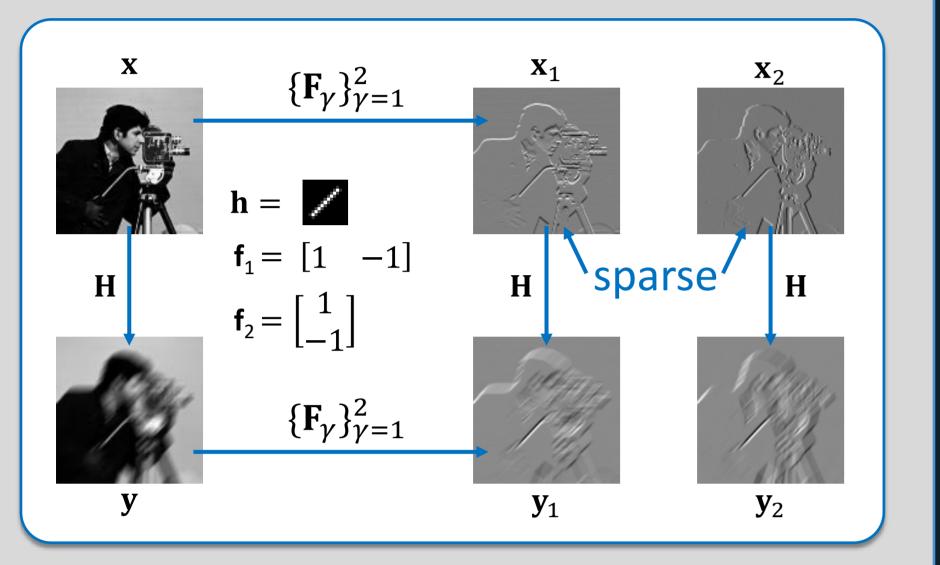
Set k = k + 1.

until convergence.
```

```
return \hat{\mathbf{h}} = \mathbf{h}^{(k)}.
```

We embedded the blur estimation into a multiscale scheme. Once we estimate $\hat{\mathbf{h}}$, we use a non-blind deconvolution algorithm to estimate the original sharp image.

Notice that $\{\mathbf{x}_{\gamma}\}_{\gamma=1}^{L}$ should be sparse since they represent highpass filtered instances of the original image.



We develop a **Blind Image Deconvolution** method that

- uses Bayesian Modeling and Variational Inference
- utilizes the Spike-and-Slab prior to impose sparsity
- is more robust against noise

The variational inference we propose

- is **more accurate** than the standard mean field variational approximation
- is much **more efficient** than MCMC

 $q(\boldsymbol{\Theta}) = q(\mathbf{h}) \prod_{\gamma=1}^{L} \prod_{i=1}^{N} q(\tilde{x}_{\gamma i}, s_{\gamma i}).$

Obtaining $q(ilde{\mathbf{x}}_{\gamma}, \mathbf{s}_{\gamma})$

Using the Kullback-Leibler criterion and the mean field factorization presented above, we have

 $q(\tilde{x}_{\gamma i}, s_{\gamma i}) = \frac{1}{\mathcal{Z}} \exp\left[\langle \ln p(\mathbf{y}_{\gamma} | \mathbf{h}, \tilde{\mathbf{x}}_{\gamma}, \mathbf{s}_{\gamma}, \beta_{\gamma}) \rangle_{q(\mathbf{\Theta}_{\tilde{x}_{\gamma i}, s_{\gamma i}})} \right] \\ \times \mathcal{N}(\tilde{x}_{\gamma i} | 0, \alpha_{\gamma}^{-1}) \pi_{\gamma}^{s_{\gamma i}} (1 - \pi_{\gamma})^{1 - s_{\gamma i}}.$

To compute the explicit expression for the above posterior we separate the derivations for $q(s_{\gamma i})$ and $q(\tilde{x}_{\gamma i}|s_{\gamma i})$.

The distributions $q(s_{\gamma i} = 0)$ and $q(s_{\gamma i} = 1)$ can be obtained by marginalization. Defining

$$\omega_{\gamma i} = q(s_{\gamma i} = 1) = \frac{1}{1 + e^{-u_{\gamma i}}}$$

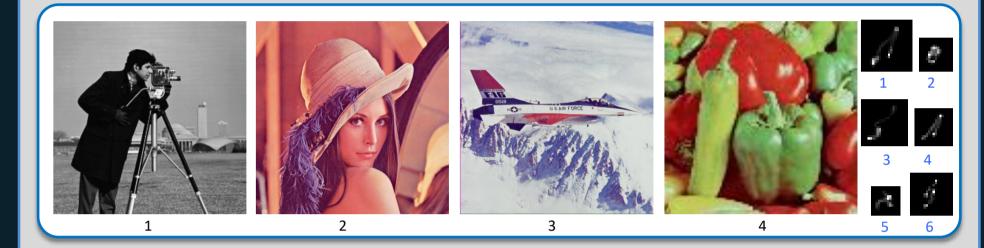
we have

$$\iota_{\gamma i} = \ln q(s_{\gamma i} = 1) - \ln q(s_{\gamma i} = 0) = \ln \frac{\pi_{\gamma}}{1 - \pi_{\gamma}} + \frac{1}{2} \ln \alpha_{\gamma}$$
$$- \frac{1}{2} \ln(\rho_{\gamma}) + \frac{\beta_{\gamma}^{2}}{2\rho_{\gamma}} \left(\mathbf{h}_{i}^{\mathrm{T}}(\mathbf{y}_{\gamma} - \sum_{k \neq i} \langle s_{\gamma k} \tilde{x}_{\gamma k} \rangle \mathbf{h}_{k}) \right)^{2}.$$

It can be shown that the conditional distributions $q(\tilde{x}_{\gamma i}|s_{\gamma i})$ for $s_{\gamma i} = \{0,1\}$ are both Gaussians of the form

5. Experimental Results

Test were run on a set of 4 test images with the 6 blur kernels.



 $\beta_{\Gamma} = 5000$, its real value, α_{Γ} , π_{Γ} were selected by a grid search. We used 2 high-pass filters: $f_1 = [1, -1]$ and $f_2 = [1, -1]^T$ for the blur estimation. For the final image reconstruction, we also use the second order derivative filters $f_3 = [-1, 2, -1]$, $f_4 = [-1, 2, -1]^T$ and $f_3 = [1, -1; -1, 1]$. Comparison with the same settings was carried out with the method in [2].

PSNR values for the Y band

image	method	kernel					
		1	2	3	4	5	6
1	Proposed	31.04	30.56	31.18	33.37	31.35	30.60
	Zhou [9]	29.24	32.92	32.27	30.99	30.64	27.20
2	Proposed	31.03	30.99	31.41	32.63	30.81	32.04
	Zhou [9]	30.11	31.00	30.29	29.25	30.40	31.62
3	Proposed	29.55	31.07	30.64	31.28	29.20	24.47
	Zhou [9]	30.77	29.70	31.03	30.18	29.52	30.18
-	- 1						

2. Bayesian Modeling

$\begin{aligned} \textbf{Observation model (in the filter space)} & \text{noise} \\ p(\mathbf{y}_{\Gamma} | \mathbf{h}, \mathbf{x}_{\Gamma}, \boldsymbol{\beta}_{\Gamma}) &= \prod_{\gamma=1}^{L} p(\mathbf{y}_{\gamma} | \mathbf{h}, \mathbf{x}_{\gamma}, \boldsymbol{\beta}_{\gamma}) \\ &= \prod_{\gamma=1}^{L} \mathcal{N}(\mathbf{y}_{\gamma} | \mathbf{H} \mathbf{x}_{\gamma}, \boldsymbol{\beta}_{\gamma}^{-1} \mathbf{I}) \end{aligned}$

Prior model

We impose a **Spike-and-Slab prior** on each pixel $x_{\gamma i}$

Slab: represents the edges of the image

Spike: Dirac delta, represents the flat areas of the image

This is a truly sparse prior: $x_{\gamma i}$ is exactly 0 with probability $1 - \pi_{\gamma}$.

 $p(x_{\gamma i}|\alpha_{\gamma}, \pi_{\gamma}) = \pi_{\gamma} \mathcal{N}(x_{\gamma i}|0, \alpha_{\gamma}^{-1}) + (1 - \pi_{\gamma}) \delta(x_{\gamma i}),$

Unfortunately, variational inference with this prior is intractable.

However, we then rewrite $x_{\gamma i}$ as the product of a Gaussian zeromean random variable $\tilde{x}_{\gamma i}$ and a Bernoulli random variable $s_{\gamma i}$.

$$x_{\gamma i} = s_{\gamma i} \tilde{x}_{\gamma i}$$

 $q(\tilde{x}_{\gamma i}|s_{\gamma i}=0) = \mathcal{N}(\tilde{x}_{\gamma i}|0,\alpha_{\gamma}^{-1}),$ $q(\tilde{x}_{\gamma i}|s_{\gamma i}=1) = \mathcal{N}(\tilde{x}_{\gamma i}|\mu_{x_{\gamma i}},\rho_{\gamma}^{-1}),$

$$\mu_{x_{\gamma i}} = \frac{\beta_{\gamma}}{\rho_{\gamma}} \mathbf{h}_{i}^{\mathrm{T}} (\mathbf{y}_{\gamma} - \sum_{k \neq i} \langle s_{\gamma k} \tilde{x}_{\gamma k} \rangle \mathbf{h}_{k})$$
$$\rho_{\gamma} = \beta_{\gamma} \parallel \mathbf{h} \parallel^{2} + \alpha_{\gamma}.$$

Finally, we can express the posterior as

 $q(\tilde{x}_{\gamma i}, s_{\gamma i}) = q(\tilde{x}_{\gamma i} | s_{\gamma i}) q(s_{\gamma i}) = \omega_{\gamma i}^{s_{\gamma i}} (1 - \omega_{\gamma i})^{1 - s_{\gamma i}} \\ \times \mathcal{N}(\tilde{x}_{\gamma i} | s_{\gamma i} \mu_{x_{\gamma i}}, s_{\gamma i} \rho_{\gamma}^{-1} + (1 - s_{\gamma i}) \alpha_{\gamma}^{-1}).$

Furthermore,

 $\langle s_{\gamma i} \tilde{x}_{\gamma i} \rangle = \langle x_{\gamma i} \rangle = \omega_{\gamma i} \mu_{x_{\gamma i}},$ $\langle s_{\gamma i}^2 \tilde{x}_{\gamma i}^2 \rangle = \langle s_{\gamma i} \tilde{x}_{\gamma i}^2 \rangle = \langle x_{\gamma i}^2 \rangle = \omega_{\gamma i} (\mu_{x_{\gamma i}}^2 + \rho_{\gamma}^{-1}).$

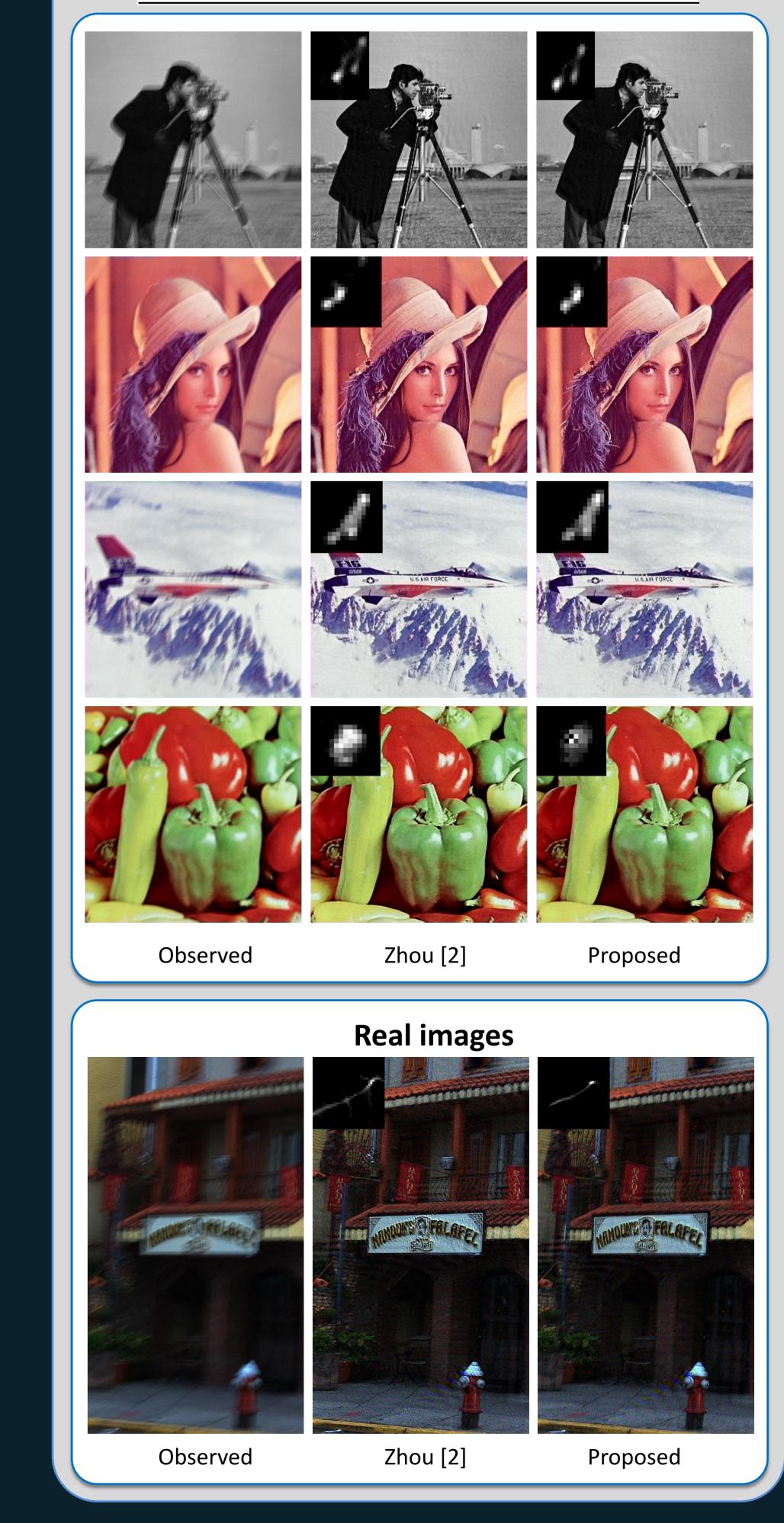
Obtaining $q(\mathbf{h})$

Notice that we assume a degenerate distribution on $q(\mathbf{h})$, which leads to the point estimate for \mathbf{h}

$$\hat{\mathbf{h}} = \arg\min_{\mathbf{h}} \sum_{\gamma=1}^{L} \left\langle ||\mathbf{y}_{\gamma} - \mathbf{H}\mathbf{x}_{\gamma}||^{2} \right\rangle_{q(\mathbf{\Omega}_{\mathbf{h}})}$$

$$= \arg\min_{\mathbf{h}} \sum_{\gamma=1}^{L} \left[||\mathbf{y}_{\gamma} - \mathbf{H}\langle \mathbf{x}_{\gamma} \rangle ||^{2} + \sum_{j=1}^{N} (\langle x_{\gamma j}^{2} \rangle - \langle x_{\gamma j} \rangle^{2}) ||\mathbf{h}||^{2} \right]$$
constrained to $h_{i} \geq 0, \ \sum_{i} h_{i} = 1.$

4 Proposed **31.04 30.47 31.75 31.66 30.31 31.21** Zhou [9] 30.08 29.96 30.60 30.15 29.48 30.44



and redefine the prior on the two components of $x_{\gamma i}$ as

$$\begin{split} \mathbf{p}(\tilde{x}_{\gamma i},s_{\gamma i}|\alpha_{\gamma},\pi_{\gamma}) &= \mathcal{N}(\tilde{x}_{\gamma i}|0,\alpha_{\gamma}^{-1})\pi_{\gamma}^{s_{\gamma i}}(1-\pi_{\gamma})^{1-s_{\gamma i}} \\ \end{split}$$
where $s_{\gamma i} \in \{0,1\}$, which is tractable.

Joint probability distribution

With all the above, we have

Observation model $p(\Theta, \mathbf{y}_{\Gamma}) = p(\mathbf{h}) \prod_{\gamma} p(\mathbf{y}_{\gamma} | \mathbf{h}, \tilde{\mathbf{x}}_{\gamma}, \mathbf{s}_{\gamma}, \beta_{\gamma})$ $\times \prod_{\gamma} \prod_{i} p(\tilde{x}_{\gamma i}, s_{\gamma i} | \alpha_{\gamma}, \pi_{\gamma}).$ set of unknowns $\Theta = \{\mathbf{h}, \tilde{\mathbf{x}}_{\Gamma}, \mathbf{s}_{\Gamma}\}$ Spike-and-slab-prior Flat prior on **h** We can efficiently solve this minimization problem with the ADMM method in [2].

Final image estimation

Once the estimate of the blur, $\hat{\mathbf{h}}$, has been obtained, a non-blind deconvolution algorithm is used to recover an estimation of the original sharp image by solving the problem

 $\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \frac{1}{2} \parallel \hat{\mathbf{H}}\mathbf{x} - \mathbf{y} \parallel_{2}^{2} + \frac{\lambda}{p} \sum_{\gamma} \parallel \mathbf{x}_{\gamma} \parallel_{p},$

using the fast iterative method in [2].

[1] M. K. Titsias and M. Lázaro-Gredilla, "Spike and slab variational inference for multi-task and multiple kernel learning," in NIPS, 2011, pp. 2339–2347.

[2] Zhou, M. Vega, F. Zhou, R. Molina, and A. K. Katsaggelos, "Fast Bayesian blind deconvolution with Huber super Gaussian priors," Digit. Signal Process., vol. 60, pp. 122–133, 2017.