STRUCTURE-ADAPTIVE VECTOR MEDIAN FILTER FOR IMPULSE NOISE REMOVAL IN COLOR IMAGES

Lianghai Jin*, Min Jin, Xiangyang Xu, and Enmin Song School of Computer Science and Technology Huazhong University of Science and Technology, China

Introduction

• This paper propose a window-adaptive vector median filter (VMF) for color image denoising.

• The new method is based on local orientation estimation.

Introduction

- To preserve image details while smoothing of noise, the smoothing should be performed along the direction of the dominant orientation.
- The stronger the strength of a local orientation, the flatter the filter window should be.

How to detect the orientation

Theorem: the power spectrum of spatial pattern lies along a line through the origin in the Fourier domain, and the direction of the line is perpendicular to the dominant spatial orientation of the pattern.

To compute the orientation of a local pattern in color images, we need to analyze the power spectrum of the color pattern.

For a color image, the power spectrum is obtained from quaternion Fourier transform.

Quaternion Fourier transform (QFT)

Let a color image f(x, y) be represented in pure quaternion form:

$$f(x, y) = R(x, y) i + G(x, y) j + B(x, y) k$$

Then, the quaternion Fourier transform (QFT) of f(x, y) is expressed as:

$$F(u,v) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) e^{-\mu (ux+vy)} dxdy$$

where μ is a unit pure quaternion and typically set to $(i + j + k)/\sqrt{3}$.

Quaternion power spectrum images

Figure. 1

Minimize Distance Sum

The detection of spatial color orientation becomes a minimization problem in QFT: finding a directional line n through the origin in the quaternion power spectrum image which minimizes the following distance sum D(n):

$$D(\boldsymbol{n}) = \iint \left(d_{\boldsymbol{n}}(u,v) \left| F(u,v) \right| \right)^2 dudv$$

Fig. 2. The distance of point (u, v) to directional line n, where $n_p =$ $(cos\theta sin\theta)$ is the normal vector of n.

Orientation Strength

$$\mathbf{n}_{p} = (\cos \theta_{\max} \sin \theta_{\max}) \qquad \lambda_{\max} = D(\mathbf{n}_{p}) = \iint \left(d_{\mathbf{n}_{p}}(u,v) \left| F(u,v) \right| \right)^{2} du dv$$

 $\mathbf{n} = (\cos \theta_{\min} \sin \theta_{\min}) \qquad \lambda_{\min} = D(\mathbf{n}) = \iint \left(d_{\mathbf{n}}(u, v) \left| F(u, v) \right| \right)^2 du dv$

the orientation strength g

$$g = \left(\frac{\lambda_{\max} - \lambda_{\min}}{\lambda_{\max} + \lambda_{\min}}\right)^2$$

Support Window

• Denote the orientation and orientation strength of the pattern in neighborhood centered at any position x_0 as l_{x0} and $g(x_0)$, then the support window W is defined as the following elliptic shape:

$$\boldsymbol{W} = \left\{ \boldsymbol{x} \mid \rho(\boldsymbol{x}, \boldsymbol{x}_0) \leq 1 \right\}$$

with

$$\rho(\boldsymbol{x},\boldsymbol{x}_0) = \frac{\left((\boldsymbol{x}-\boldsymbol{x}_0)\cdot\boldsymbol{l}_{\boldsymbol{x}\boldsymbol{\theta}}\right)^2}{r^2} + \frac{\left((\boldsymbol{x}-\boldsymbol{x}_0)\cdot\boldsymbol{l}_{\boldsymbol{x}\boldsymbol{\theta}}\right)^2}{\left(\left(1-g(\boldsymbol{x}_0)\right)r\right)^2}$$

METHOD

• Denote that $\boldsymbol{l} = (cos\theta sin\theta)$, $\boldsymbol{x}_0 = (x_0, y_0)$ and $\boldsymbol{x} = (x, y)$, then

$$\rho(\mathbf{x}, \mathbf{x}_0) = \frac{\left((x - x_0)\cos\theta + (y - y_0)\sin\theta\right)^2}{r^2} + \frac{\left(-(x - x_0)\sin\theta + (y - y_0)\cos\theta\right)^2}{\left(\left(1 - g(x_0, y_0)\right)r\right)^2}$$

Thus, the output of proposed SAVMF on position x₀ of color image I can be expressed as follows:

$$\mathbf{y}^{\text{SAVMF}}(\boldsymbol{x}_0) = \min_{\mathbf{I}(\boldsymbol{x})} \sum_{\boldsymbol{x} \in W} \left\| \mathbf{I}(\boldsymbol{x}) - \mathbf{I}(\boldsymbol{x}_0) \right\|_2$$

EXPERIMENTS

(a) Parrots is corrupted by50% impulse noise

(b) Vector Median Filter

(c) Proposal (SAVMF)

(a) FAPGF

(b) FAPGF_SAVMF

(c) QSVMF

(d) QSVMF_SAVMF

EXPERIMENTS

EXPERIMENTS

Indexes Methods	Lena(25%)			Parrots(50%)		
	PSNR	MAE	NCD	PSNR	MAE	NCD
Noisy image	16.40	12.90	0.1437	13.28	26.08	0.2868
VMF	29.63	3.85	0.0246	23.90	6.55	0.0473
SAVMF	30.44	3.65	0.0233	25.74	5.76	0.0363
FAPGF	30.74	2.08	0.0156	23.95	5.68	0.0454
FAPGF_SAVMF	31.83	1.85	0.0141	25.90	4.71	0.0336
QSVMF	33.64	1.42	0.0092	27.53	3.55	0.0220
QSVMF_SAVMF	34.61	1.26	0.0084	27.89	3.40	0.0210

Thanks!

Email: Lianghaijin@gmail.com