# Phase Estimation in Single-Channel Speech Enhancement **Using Phase Invariance Constraint**

MICHAEL PIROLT<sup>†</sup>, JOHANNES STAHL<sup>†</sup>, PEJMAN MOWLAEE<sup>†</sup>, VASILI I. VOROBIOV<sup>‡</sup>, SIARHEI Y. BARYSENKA<sup>‡</sup>, ANDREW G. DAVYDOV<sup>‡</sup> (PRESENTED BY GERNOT KUBIN)

<sup>†</sup>Signal Processing and Speech Communication Laboratory, Graz University of Technology, Austria Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus

### Abstract

- Phase-aware speech processing: **fundamentals-applications** [1,8]. Is phase processing **possible**? [2,4]
- Existing methods: Temporal Smoothing of Unwrapped Phase (TSUP) [2] and Maximum a Posteriori (MAP) [6], STFT phase improvement [4]
- Phase-aware processing in speech enhancement (see [1, Ch. 3])
- Here: phase invariance property to estimate clean spectral phase

#### 1. Notations and Signal Model

For each frame index l, the noisy speech is given by:

$$y(n,l) = \sum_{h=1}^{H_l} A(h,l) \cos \left( h \cdot 2\pi \frac{F_0(l)}{f_s} n + \Phi(h,l) \right) + \nu(n,l),$$

 $\nu(n,l)$ : noise at frame l and time n $H_l$ : number of harmonics at frame l $F_0(l)$ : fundamental frequency,

Y(k,l) : noisy DFT spectrum  $\vartheta(k,l) = \angle Y(k,l)$  : noisy DFT phase  $\overrightarrow{K}$ : DFT length with  $k \in [0, K-1]$  $N_w:$  analysis window main lobe width

h : harmonic index with  $h \in [1, H_l]$  $\Phi(h, l)$ : unwrapped phase  $f_s$ : sampling frequency  $\hat{X}(k,l)$  : phase-enhanced spectrum  $\hat{artheta}(k,l)$  : enhanced DFT phase l: frame index

 $\hat{\boldsymbol{x}}(n)$  : phase-enhanced signal

### 2. Phase Invariant (PI) and Phase Quasi Invariant (PQI) Properties

Phase Invariant (PI): for a harmonic signal, Zverev [9] proposed phase invariant (PI) property, determined for each triplet of the harmonic components if their frequencies satisfy the following set of equations:

$$\begin{cases} f_1 = K_1 F_0, & \text{where } K_1 = 1, 2, \dots \\ f_2 = K_2 F_0, & \text{where } K_2 = K_1 + 1, K_1 + 2, \dots \\ f_3 = K_3 F_0, & \text{where } K_3 = 2K_2 - K_1. \end{cases}$$

Then the PI denoted by  $\Delta\Psi(l)$ , is given by:

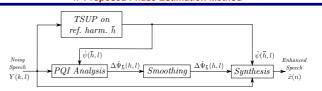
$$\Delta\Psi(l) = \frac{\Psi(1,l) + \Psi(3,l)}{2} - \Psi(2,l)$$
$$= \frac{\Phi(1,l) + \Phi(3,l)}{2} - \Phi(2,l).$$

Phase Quasi-Invariant (PQI): was introduced by Vorobiov [5], between components with frequencies  $\bar{h}F_0(t)$  and  $hF_0(t)$ . For an arbitrary pair  $\{h,\bar{h}\}$  $[1, H_l]$  we obtain:

$$\Delta\Psi_{\bar{h}}(h,l) = \frac{h}{\bar{h}} \left( \Phi(\bar{h},l) - \frac{\Phi(h,l) \cdot \bar{h}}{h} \right) \bigg|_{\frac{2\pi \cdot \bar{h}}{\bar{h}}}$$
$$= \frac{h}{\bar{h}} \left( \Psi(\bar{h},l) - \frac{\Psi(h,l) \cdot \bar{h}}{h} \right) \bigg|_{\frac{2\pi \cdot \bar{h}}{\bar{h}}}$$

## 3. Temporal Smoothing of PQI

Given pre-enhanced reference phases  $\hat{\Psi}(\bar{h},l)$ , PQI values are given by:


$$\Delta \hat{\Psi}_{\bar{h}}(h,l) = \frac{h}{\bar{h}} \left( \hat{\Psi}(\bar{h},l) - \frac{\Psi(h,l) \cdot \bar{h}}{h} \right) \bigg|_{\frac{2\pi \cdot \bar{h}}{\bar{h}}}$$

We temporally smooth the PQI as follows

$$\Delta \tilde{\Psi}_{\bar{h}}(h,l) = \angle \frac{1}{|\mathcal{W}|} \sum_{\bar{l} \in \mathcal{W}} e^{j\Delta \hat{\Psi}_{\bar{h}}(h,\tilde{l})},$$

 ${\cal W}$  : the set of frames that lie within a range of 100 milliseconds around frame l.

### 4. Proposed Phase Estimation Method



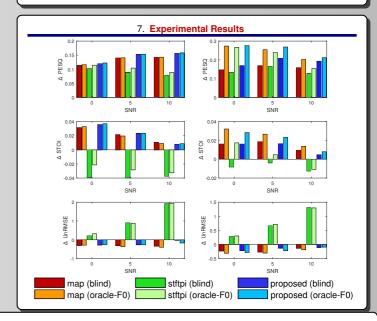
### 5. Signal Synthesis

The enhanced harmonic phase is transformed to the STFT domain by modifying the frequency bins within the main lobe width of the analysis window:

$$\hat{\vartheta}(\lfloor h\omega_0(l)K\rfloor + i, l) = \underbrace{\left(\frac{h \cdot \hat{\Psi}(\bar{h}, l)}{\bar{h}} - \Delta \tilde{\Psi}_{\bar{h}}(h, l)\right)}_{\hat{\psi}(\bar{h}, l)}$$

where  $\forall i \in [-N_p(l)/2, N_p(l)/2], N_p(l)$  minimum value of either  $N_w$  or frequencies close to neighboring harmonic  $N_p(l) = \min(N_w, \omega_0(l)K/(2\pi))$ . We obtain the phase-enhanced signal in STFT domain by:

$$\hat{X}(k,l) = |Y(k,l)|e^{j\hat{\vartheta}(k,l)}$$


 $\hat{x}(n)$  is given by applying the inverse DFT of  $\hat{X}(k,l)$  followed by overlap-add.

### 6. Experiment Setup

- Speech: GRID corpus, 50 utterances (specakers: 10 female, 10 male) Noise: NOISEX-92: white and babble, mixed at SNR  $\in \{0, 5, 10\}$  (dB) Methods: MAP [6], STFT phase improvement (STFTPI) [4], proposed.

- Robustness to  $F_0$  estimation errors: oracle- $F_0$  vs. blind scenario

- Evaluation criteria:  $\triangle$ PESQ,  $\triangle$ STOI,  $\triangle$ UnRMSE in (dB) [7]. In PESQ, the proposed method outperforms others. In terms of phase estimation error (UnRMSE), MAP [6] is the best.
- Listening examples at: www2.spsc.tugraz.at/people/pmowlaee/PQI



# 8. References

[9] V. A. Zverev, "Modulation method of ultrasonic dispersion measurements (in Russian)," USSR Academy of Sciences, 91(4), pp. 791-794, 1953.

- [1] P. Mowlaee, J. Kulmer, J. Stahl, and F. Mayer, "Phase-Aware Signal Processing in Speech Communication: History, Theory and Practice," John Wiley & Sons, 2016.
  [2] P. Mowlaee and J. Kulmer, "Phase Estimation in Single-Channel Speech Enhancement: Limits-Potential," TASL, 23(8), pp. 1283-1294, 2015.
  [3] T. Gerkmann, M. Krawczyk-Becker, and J. Le Roux, "Phase Processing for Single-Channel Speech Enhancement: History and recent advances," IEEE Signal Processing Magazine, 32(2), pp. 55-66, 2015.
  [4] M. Krawczyk and T. Gerkmann, "STFT Phase Reconstruction in Voiced Speech for an Improved Single-Channel Speech Enhancement," TASL, 22(12), pp. 1931-1940, 2014.
  [5] V. I. Vorobiov, "Inter-component phase processing of speech signals for their recognition and identification of announcers," in Proc. Russian Acoustical Society, pp. 48-51, 2006.
  [6] J. Kulmer and P. Mowlaee, "Harmonic phase estimation in single-channel speech enhancement using von mises distribution and prior snr," ICASSP, pp. 5063-5067, 2015.

- [7] A. Gaich and P. Mowlaee, "On Speech Intelligibility Estimation of Phase-Aware Single-Channel Speech Enhancement", INTERSPEECH, pp. 2553-2557, 2015.

