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Adaptive filters

• Unknown filter w
• Access to xn, dn

• Estimate of unknown filter ŵn

• Estimation error en = dn − ŵ>n x
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Adaptive filtering algorithms

1st order methods – Least mean squares (LMS)

• Stochastic gradient descent:

ŵn = arg min
w

E|en|2, ŵn = ŵn−1 + µenxn

• Cheap, robust

2nd order methods – Recursive Least Squares (RLS)

• Least squares problem:

ŵn = arg min
w

∥∥∥ΛΛΛ1/2
n (Xnw− dn)

∥∥∥2

• Complex, faster convergence, lower residual
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Sketching

Theorem (Johnson-Lindenstrauss lemma)

Distances are preserved whp.

(1− ε)‖u− v‖2 ≤ ‖Su− Sv‖2 ≤ (1 + ε)‖u− v‖2
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Application to solving least squares problem

• Smaller system to solve!
• The J-L lemma implies ‖Ax̃− b‖2 ≤ (1 + ε)‖AxLS − b‖2

• But no good bound on solution error
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Objective of this talk

Apply sketching to the RLS algorithm.

ŵn = arg min
w

∥∥∥ΛΛΛ1/2
n (Xnw− dn)

∥∥∥2

Wish list

• As good as RLS
• With less computations
• Good convergence
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Outline

1. The iterative Hessian sketch

2. The recursive least squares

3. The recursive Hessian sketch

6



The iterative Hessian sketch
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The Hessian sketch for least-squares
M. Pilanci, M. J. Wainwright, Iterative Hessian sketch: Fast and accurate solution
approximation for constrained least-squares, 2014.

Goal

min
x

1
2
‖Ax− b‖2 ,

A : data matrix
b : response vector

The Hessian sketch

x̃ = arg min
x

1
2
‖SAx‖2 −

(
A>b

)>
x

Sketch only data matrix, then

‖xLS − x̃‖A

‖xLS‖A
≤ δ
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The iterative Hessian sketch (IHS)

Relative error: δ
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The iterative Hessian sketch (IHS)

Relative error: δ2
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The iterative Hessian sketch (IHS)

Relative error: δ3
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The iterative Hessian sketch (IHS)

Relative error: ε in N = log(1/ε) iterations
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Iterative Hessian sketch : summary

• Sketch data matrix, not the response vector
• ε-approx of LS in log(1/ε) iterations
• Save computational cost of ATA
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The recursive least squares
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Exponentially weighted least squares
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Recursion equation

RLS filter update

ŵn =
(

X>n ΛΛΛnXn

)
︸ ︷︷ ︸

Rn

−1
X>n ΛΛΛndn︸ ︷︷ ︸

yn

Data update

Xn+1 =

[
x>
Xn

]
dn+1 =

[
d
dn

]

RLS filter update

ŵn+1 =
(
λRn + xx>

)
︸ ︷︷ ︸

rank-1 update!

−1
(λyn + xd)︸ ︷︷ ︸

yn+1
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Summary of RLS algorithm

• Solve LS at each step
• Update solution with matrix inversion lemma
• Cost quadratic in filter length
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The recursive Hessian sketch
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Sketching RLS

• Recall the Hessian sketch (A = ΛΛΛ
1/2
n Xn, b = ΛΛΛ

1/2
n dn)

w̃n = arg min
x

1
2
‖SnAx‖2 −

(
A>b

)>
x

• Random row sampling : Sn, fixed aspect ratio q = m
n

Sn =

[
bn 0
0 Sn−1

]
, bn =

{
1 w.p. q
0 w.p. 1− q

Caveat: IHS proof does not cover this sketch (yet)
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The recursive Hessian sketch (RHS)
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Summary of RHS algorithm

• Apply Hessian sketch to RLS
• Update inverse matrix wp q
• Cascade N sketched RLS

20



Summary of RHS algorithm

• Apply Hessian sketch to RLS
• Update inverse matrix wp q
• Cascade N sketched RLS

20



Summary of RHS algorithm

• Apply Hessian sketch to RLS
• Update inverse matrix wp q
• Cascade N sketched RLS

20



Complexity RLS vs RHS

Filter length : 10
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Complexity RLS vs RHS

Filter length : 50

21



Complexity RLS vs RHS

Filter length : 100
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Complexity RLS vs RHS

Filter length : 1000
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Simulation results — MSE, SNR 30dB

Filter length 1000, N = 5, 300 realizations
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Simulation results — MSE, SNR 30dB

Filter length 1000, N = 5, 300 realizations
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Simulation results — MSE, SNR 10dB

Filter length 1000, N = 5, 300 realizations
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Conclusion

Contributions

• A sketched adaptive filter converging to RLS solution
• Lower computational complexity
• Extensive simulation

What’s next ?

• Proof of IHS for random row sampling
• Experiments with non-stationary input (e.g. audio, speech)
• Investigate tracking behavior
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Thanks for your attention!

Code and figures available at
http://github.com/LCAV/SketchRLS/
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