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Abstract

The recently reported Wil’tiﬂCJ@l’ flow (WF) algorithm has been demonstrated as a promising method for solving the problem of
P hase retrieval by applying a gI'a dient descent scheme. An empirical choice of stepsize is suggested in practice. However, this
heuristic stepsize selection rule is not optimal. In order to accelerate the convergence rate, we propose an improved WF with OpﬂlﬂGl
St@pSlZG . It is revealed that this optimal stepsize is the solution of a UIN lvariate cubic eq uation with real-valued coefficients.

Finding its roots is computationally simple because a closed-form eXpression exists. Furthermore, compared with obtaining the
coefficients of the cubic equation, calculating the gradient is still the leading cost. Therefore, the proposed approach has the same dominant
cost as WF in each iteration. Simulation results are provided to validate its efficiency compared to the existing technique.

Introcduction

Phase retrieval refers to the task of recovering a signal from phaseless measurements , ie, reconstruction of
a signal given only the magnitudes of its linear measurements. This problem arises in various fields of science and engineering, such as
optical imaging, X-ray crystallography, astronomy, and radar, when the phases of the linear transform of the signal are unavailable [1]2].
The phase retrieval problem can be represented as

find x )
such that b; = |af/x|2, i=1,--- M
here b; is the ith phasel bservation of | "X = X1, I"e CN, and a; is the tl * ~ N hat tl
where b; is the ith phaseless observation of a complex vector x =[x, XN E , and a; ts the (th measurement vector. Note that the

problem reduces to SOlVlﬂ(J ad Sgstem of q uadratic eq uations, which is known as NP hard in general. Furthermore, the
equality relationship in (1) cannot hold exactly in the presence of noise.

Wirtinger flow

The following least squares criterion is considered for solving x:

1 X2 2
min f(x) W;(‘ai x‘ —bi) | 2)
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e The cost function f(x) is N0t CONVEX. Minimizing non-convex objectives may have very many stationary points.

e Surprisingly, Candes et al. prove that the WF with an initialization using a spectral method converges to the global solution at a geometric
rate with high probability provided that the sample size is on the order of Nlog N [1].

The WF method is a gradient descent scheme. At the kth iteration, given the current point xX the estimator can be updated by taking a
step along the negative gradient direction. That is,

Xk+1::Xk__akgk (3)
where the gradient gk = 0@1‘)(():) «—xk can be calculated based on Wirtinger clerivatz'tves as g~ = AH(r o Ax), where A = la7, - ,G*M]T e CM*N
is the measurement matrix, r =[rq, - - ,rM]T is the error vector with r; = ‘aﬁx‘ — b; and af € Ry is the current stepsize, which is chosen

empirically as
o) = min (1 _ e kiko, l<max) (4)

where ky and kmax are two constants with typical values being shown in [1].

Remarks:
e [his heuristic stepsize selection rule is not optimal.

e [ he St@pSlZG controls the convergence rate. The algorithm may converge slowly if the stepsize is too small whereas the
algorithm may diverge if the stepsize is too large.

« Our aim is to accelerate the convergence rate of the WF through selecting a more appropriate stepsize.

Wirtinger Flow Method with Optimal Stepsize
for Phase Retrieval
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Wirtinger Flow with Optimal Stepsize (WFQOS)
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Given x* and gl< at the kth iteration, the optimal step size can be obtained by solving the line search

o = argmin f(x* — agh). (5)

a

Note that the cost function f(xk—agk) isa UNLvartate q uartic function of «. The optimal stepsize satisfies the following first-order
optimality condition:
df (x* — ag*)

=0
da
which leads to a UNivariate cubic c( uation of « given by
3 2 _
cza” +cpa”+cga+cg=0 (6)

with real-valued constant coefficients {c3, ¢7, ¢1, cg}. Then the optimal stepsize is the real root associated with the minimum objective value
itf (6) has three real roots or the minimizer is the unique real root if (6) has a real root and a pair of complex conjugate roots.

Computational Complexity:
e The computational cost for calculating the coefficients {c3, ¢y, 1, cg} is O(M).
e The complexity of calculating the roots of a cubic equation is merely O(1) because a closed-form solution exists.

e Computing the gradient is still the leading cost of the proposed WFOS in each iteration, which is O(MN).

Simulation Results
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Simulation settings:

e Random complex Gaussian signal

e Signal dimension N = 64. Observation

dimension is six times the signal dimen-
sion, i.e, M = 6N.

e [he same initial value obtained from the
spectral method [1].

NMSE

e The stepsize for WF at the kth iteration
is ax = min (1 —e~*39,0.2) [1]

e The noise component is sampled from
| N (0, 0%/2) + jN(0,0%/2) and we have
. SNR = 20 dB.
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Fig. 1: The convergence behavior of the WFOS compared with WF. The light curves represent the results for each run and

thick curves represent the average results over 50 Monte Carlo trials.

Conclusion

e The proposed WFOS for phase retrieval significantly accelerates the convergence rate of WF.
e [he optimal stepsize is demonstrated to be the solution of a univariate cubic c( uation with real-valued coefficients.

e The WFOS has the Same leacl'tng COSt as WF for computation of the gradient in each iteration, which is O(MN).

e The proposed scheme to obtain the optimal stepsize of WF can also be directly applied to the truncated WF.
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