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AbstractThe recently reported Wirtinger flow (WF) algorithm has been demonstrated as a promising method for solving the problem ofphase retrieval by applying a gradient descent scheme. An empirical choice of stepsize is suggested in practice. However, thisheuristic stepsize selection rule is not optimal. In order to accelerate the convergence rate, we propose an improved WF with optimalstepsize . It is revealed that this optimal stepsize is the solution of a univariate cubic equation with real-valued coefficients.Finding its roots is computationally simple because a closed-form expression exists. Furthermore, compared with obtaining thecoefficients of the cubic equation, calculating the gradient is still the leading cost. Therefore, the proposed approach has the same dominantcost as WF in each iteration. Simulation results are provided to validate its efficiency compared to the existing technique.
IntroductionPhase retrieval refers to the task of recovering a signal from phaseless measurements , i.e., reconstruction ofa signal given only the magnitudes of its linear measurements. This problem arises in various fields of science and engineering, such asoptical imaging, X-ray crystallography, astronomy, and radar, when the phases of the linear transform of the signal are unavailable [1][2].The phase retrieval problem can be represented as

find xxxsuch that bi = |aaaHi xxx|2, i = 1, · · · ,M (1)
where bi is the ith phaseless observation of a complex vector xxx = [x1, · · · , xN ]T ∈ CN , and aaai is the ith measurement vector. Note that theproblem reduces to solving a system of quadratic equations, which is known as NP hard in general. Furthermore, theequality relationship in (1) cannot hold exactly in the presence of noise.
Wirtinger flow
The following least squares criterion is considered for solving xxx:

min
xxx
f (xxx) ∆= 12M M∑

i=1
(∣∣∣aaaHi xxx∣∣∣2 − bi)2

. (2)
• The cost function f (xxx) is not convex. Minimizing non-convex objectives may have very many stationary points.
• Surprisingly, Candès et al. prove that the WF with an initialization using a spectral method converges to the global solution at a geometricrate with high probability provided that the sample size is on the order of N logN [1].The WF method is a gradient descent scheme. At the kth iteration, given the current point xxxk , the estimator can be updated by taking astep along the negative gradient direction. That is,

xxxk+1 = xxxk − αkgggk (3)where the gradient gggk = ∂f (xxx)
∂xxx∗

∣∣xxx=xxxk can be calculated based on Wirtinger derivatives as gggk = AAAH(rrr�AAAxxx), where AAA = [aaa∗1, · · · ,aaa∗M]T ∈ CM×Nis the measurement matrix, rrr = [r1, · · · , rM ]T is the error vector with ri = ∣∣∣aaaHi xxx∣∣∣2 − bi and αk ∈ R+ is the current stepsize, which is chosenempirically as
αk = min(1− e−k/k0, kmax) (4)where k0 and kmax are two constants with typical values being shown in [1].

Remarks:
• This heuristic stepsize selection rule is not optimal.
•The stepsize controls the convergence rate. The algorithm may converge slowly if the stepsize is too small whereas thealgorithm may diverge if the stepsize is too large.
•Our aim is to accelerate the convergence rate of the WF through selecting a more appropriate stepsize.

Wirtinger Flow with Optimal Stepsize (WFOS)
Given xxxk and gggk at the kth iteration, the optimal step size can be obtained by solving the line search

αk = argmin
α

f (xxxk − αgggk ). (5)
Note that the cost function f (xxxk−αgggk ) is a univariate quartic function of α . The optimal stepsize satisfies the following first-orderoptimality condition: df (xxxk − αgggk )dα = 0
which leads to a univariate cubic equation of α given by

c3α3 + c2α2 + c1α + c0 = 0 (6)
with real-valued constant coefficients {c3, c2, c1, c0}. Then the optimal stepsize is the real root associated with the minimum objective valueif (6) has three real roots or the minimizer is the unique real root if (6) has a real root and a pair of complex conjugate roots.
Computational Complexity:
• The computational cost for calculating the coefficients {c3, c2, c1, c0} is O(M).
• The complexity of calculating the roots of a cubic equation is merely O(1) because a closed-form solution exists.
• Computing the gradient is still the leading cost of the proposed WFOS in each iteration, which is O(MN).
Simulation Results
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Fig. 1: The convergence behavior of the WFOS compared with WF. The light curves represent the results for each run andthick curves represent the average results over 50 Monte Carlo trials.

Simulation settings:
• Random complex Gaussian signal
• Signal dimension N = 64. Observationdimension is six times the signal dimen-sion, i.e, M = 6N .
• The same initial value obtained from thespectral method [1].
• The stepsize for WF at the kth iterationis αk = min (1− e−k/330, 0.2) [1].
• The noise component is sampled from
N (0, σ 2/2) + jN (0, σ 2/2) and we haveSNR = 20 dB.

Conclusion
• The proposed WFOS for phase retrieval significantly accelerates the convergence rate of WF.
• The optimal stepsize is demonstrated to be the solution of a univariate cubic equation with real-valued coefficients.
• The WFOS has the same leading cost as WF for computation of the gradient in each iteration, which is O(MN).
• The proposed scheme to obtain the optimal stepsize of WF can also be directly applied to the truncated WF.
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