( Consistent Estimation of Randomly Sampled Ornstein-Uhlenbeck
\W‘v Process Long-Run Mean for Long-Term Target State Prediction LUCONN

organization Leonardo M. Millefiori!, Paolo Braca' and Peter Willett? SCHOOL OF ENGINEERING

CMRE I NATO STO CMRE, La Spezia, ltaly, Email: {leonardo.millefiori, paolo.braca}@cmre.nato.int
> ECE Department, University of Connecticut, Storrs CT, Email: willett@engr.uconn.edu

Problem Model

Validation (real-world dataset, ~200,000 contacts)

Ship traffic monitoring is a foundation for many maritime applications.
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The SME error covariance can be computed by conditioning on the
observation time intervals D,, = {A;}) ;. Interestingly, the SME
error covariance has a closed form also for random i.i.d. A;'s.

function

Knowledge of the process parameters is required for optimal prediction :
that, interestingly, is independent of the true long-run mean value. The SME error covariance
overall prediction error covariance can be seen as the sum of the ideal r
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