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Problem
Ship traffic monitoring is a foundation for many maritime applications.
At the sime time, vessels in the open sea are seldom continuously
observed, and the problem of long-term target state prediction be-
comes crucial. Unfortunately, the issue has been overlooked in the
target tracking literature and traditional motion models, such as the
Nearly-Constant Velocity (NCV) model, are not suitable for long-term
predictions. A novel target motion model, based on the stochastic,
mean-reverting Ornstein-Uhlenbeck process was recently proposed and
validated [1, 2] to properly characterize the motion of non-maneuvering
ships at sea and validated against a very large real-world data set.

Contributions
Unlike NCV, which has only one parameter, the OU process is governed
by a set of parameters: the long-run mean v, the reversion rate Γ,
and the process noise covariance C, which are clearly unknown in real
applications.
At the same time, knowledge of these parameters is required in order
to perform the optimal prediction in the Bayesian sense. This paper
focuses on the lack of knowledge of the long-run mean v and shows
how the target state prediction is affected by it in the long term. The
main contribution of this work is a closed form for the error covariance
matrix of the SME of v, showing that:
• the SME is

√
n-consistent with a random sampling interval, and

• it reaches the CRLB when the sampling time is constant.

Model

ds(t) = As(t) dt+ Gv dt+ B dw(t)

Ornstein-Uhlenbeck (OU) model

A =
[
0 I

0 RΓR−1

]
, B =

[
0
C

]
, G =

[
0

RΓR−1

]
The NCV target motion equation has a similar form and, interestingly,
can be seen as a special OU process, with a null reversion rate matrix
Γ = 0, meaning that there is not any tendency of the walk to move
back towards the long-run mean.

ds(t) = As(t) dt+ B dw(t)

Nearly Constant Velocity (NCV) model

A =
[
0 I
0 0

]
, B =

[
0
C

]
Actual speed of
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Validation (real-world dataset, ≈200,000 contacts)
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tn−1 · · · ti+1

∆i

ti

∆i−1

ti−1 · · · t0 t

prediction

observations

E
[
s(t)
∣∣s(t0),v

]
= R̃Φ (t− t0,γ) R̃−1

s(t0)

+ R̃Ψ (t− t0,γ)R−1
v

Optimal prediction

Φ (t,γ) =

[
I
(
I − e−Γ t

)
Γ−1

0 e−Γ t

]
state transition

matrix

Ψ(t,γ) =

[
t I −

(
I − e−Γ t

)
Γ−1

I − e−Γ t

]
control input
function

Knowledge of the process parameters is required for optimal prediction
that, interestingly, is independent of the true long-run mean value. The
overall prediction error covariance can be seen as the sum of the ideal
(vn = v) prediction error covariance C∗(t − t0) and an additional
term Cn that accounts for the imperfect knowledge of v.

Cn(t− t0) = C
∗(t− t0)

+R̃Ψ (t− t0,γ)CnΨ (t− t0,γ)T
R̃

T

Prediction covariance

Results
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Estimator (SME) vn =
1
n

n−1∑
i=0

ẋi
independent of the
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The SME error covariance can be computed by conditioning on the
observation time intervals Dn = {∆i}ni=1. Interestingly, the SME
error covariance has a closed form also for random i.i.d. ∆i’s.

Cn = Σ∞ ◦
[

a
(∆)
n (γx) b

(∆)
n (γx, γy)

b
(∆)
n (γx, γy) a

(∆)
n (γy)

]SME error covariance

a
(∆)
n (δ) = αn (κ∆(γx))

b
(∆)
n (δ1, δ2) = βn (κ∆(γx), κ∆(γy))

κ∆(γ) = − log E
[
e−γ∆

]


