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Abstract
In many deterministic estimation problems, the probability density function

(p.d.f.) parameterized by unknown deterministic parameters results from the
marginalization of a joint p.d.f. depending on additional random variables.
Unfortunately, this marginalization is often mathematically intractable, which
orevents from using standard maximum likelihood estimators (MLEs) or any
standard lower bound on their mean squared error (MSE). To circumvent this
oroblem, the use of joint MLEs of deterministic and random parameters are
oroposed as being a substitute. It is shown that, regarding the deterministic
barameters: 1) the joint MLEs provide generally suboptimal estimates in any
asymptotic regions of operation yielding unbiased efficient estimates, 2) any
representative of the two general classes of lower bounds, respectively the
Small-Error bounds and the Large-Error bounds, has a " non-standard” version
lower bounding the MSE of the deterministic parameters estimate.

Standard and Non-Standard deterministic estimation problems

@ A model of the general deterministic estimation problem has the following four
components: 1) a parameter space O, 2) an observation space X, 3) a
probabilistic mapping from parameter vector space ©, to observation space A,
that is the probability law that governs the effect of a parameter vector value 6
on the observation x and, 4) an estimation rule, that is the mapping of the

observation space X into vector parameter estimates 0 (x).

@ Actually, in many estimation problems, the probabilistic mapping results from a
two steps probabilistic mechanism involving an additional random vector 8,

0, c ©, C R thatisi) @ — 0, ~p(0,;0),ii) (0,0,) — = ~ p(x|0,;0),
and leading to a compound probability distribution:

P (CB, 0,; 0) — P (CIZ‘HT; 9)]7 (97“5 H) ;

p(x;0) Z/p(w,HT;H) e,
O,
where p (x|0,; 0) is the conditional probability density function (p.d.f.) of x
given 6,., and p (0,;0) is the prior p.d.f., parameterized by 6.

(1a)
(1b)

@ [ herefore, deterministic estimation problems can be divided into two subsets:
1) the subset of "standard” deterministic estimation problems for which a
closed-form expression of p (x; @) is available,

2) the subset of "non-standard” deterministic estimation problems for which
only an integral form of p (a; @) (1b) is available.

Non-standard maximum likelihood estimator for deterministic

estimation (single parameter case)

@ [ he widespread use of MLEs originates from the fact that, under reasonably
general conditions on the observation model, the MLEs are asymptotically
uniformly unbiased, Gaussian distributed and efficient when the number of
independent observations tends to infinity.

o If a closed-form of p (a; ) does not exist and the standard MLE of 6

(2)

</9\ML () = argmax {p (x;0)},
0cO,

cannot be derived, a sensible solution in the search of a realizable estimator
based on the ML principle is to look for:
= arg max

(6. (@).8(2)) =ars,_max  {p(xl6,.6)}
referred to as " non-standard” MLEs (NSMLEs). The underlying idea is

that in many estimation problems the closed-form of p (x|8,;0) is known and
the NSMLEs (3) take advantage not only of the MLEs properties, but also of
the extensive open literature on MLE closed-form expressions or approximations.

@ The NSMLE is more attractive than:
1) the joint maximum a posteriori-maximum likelihood estimate (JMAPMLE) of
the hybrid parameter vector (9;, (9):
= arg max

(6r @).05 (@) = arg_max  {p(w.0::0)}

which is most times biased and inconsistent whatever the number of
independent observations.

2) the expectation-maximization (EM) algorithm which, in non-standard
estimation, consists in the following iterative procedure:

0,1 = arg max {Egrkp;gn Inp(x,0,; 6’)]} ,
0cO,

(3)

(4)

(5)

which is unlikely to be of practical use in many estimation problems of interest
where p (0,;0) is not a conjugate prior for the likelihood function p (|6,;0)
and p (0,|x; 0) is not computable.

Non-standard lower bounds

@ Let us denote @ = <9> p(x|9) =

ST 0 (x) |
any unbiased estimator ¢ (x) = | ~ > of @ verify:
0, (x)
- ~ -
Eg,0 {E (") R,, (") E ‘I’N)T} < L, (¢ - ¢) (¢ - ¢) . (6)

(
where @Y = [¢! . ¢V] E(@V) = [¢' — ¢ ... ¢V — ¢].
U

Vg (1 ¢) = "arg)
@ In any asymptotic region of operation of NSMLEs, since NSMLEs is an unbiased

estimate of ¢, (6) is a LB on the covariance matrix of NSMLEs.

@ In the same vein, any Barankin bound approximation (BBA) on the MSE of

unbiased estimator ¢ (x) results from a linear transformation of the NSMSB (6)
and defines a non-standard BBA (NSBBA). As well as the NSMSB (6), any

NSBBA lower bounds the MSE of NSMLEs in any asymptotic region of
operation.

@ Note that in general, the NSBBAs cannot be arranged in closed form due to the
presence of the statistical expectation. They however can be evaluated by
numerical integration or Monte Carlo simulation.

Non-standard lower bound Examples

A typical example is the CRB obtained for N = 2, where ¢' = ((9, HZ)T and
¢> = (0+d6,07) .

hen by letting df be infinitesimally small, (6) becomes:

<amp<w|¢>>2' B

E
df—0 z|®

00 | (7)

that is the Miller and Chang bound.
Following the rationale introduced by Fraser and Guttman, a straightforward

extension of (7) is obtained for ®" = [¢' ... qu},
¢" = (0+ (n—1)dh,07) , 1 < n < N. Then by letting df be infinitesimally
small, (6) becomes the NS Battacharayya bounds of order N — 1:

(6) — NSBaB 2 Eg [e{ Eye [b(x: ) b” (23 ¢) ‘161} |

df—0
N-1( T
where b (z: ¢) = 1 (@pg';’@, L2 8$<19'¢>) ey =(1,0,....0)7

(8)

A new look at Gaussian observation models
A simple and well known instantiation of the Gaussian observation model is:

1 <t<T, (9)

where a4, ..., a; are the complex amplitudes of the signal, s ( ) is a vector of M
parametric functions depending on a single deterministic parameter T,
n, ~ CN (O, U%IM), 1 <t <T, arei.id. Gaussian complex circular noises

independent of the signal of interest. Additionally if a ~ CN (O, O'CQLIT), then (9)

. . . . T
is an unconditional observation model parameterized by 0 = (T, 02,0,,21)

the MLE of 7 is the UMLE 7. The associated CRB is the UCRB:

CBt:S(T)CLt T4,

~and

UCRB; =02 (2h (1) To?) ' (1+ SNR™"), (10)
ou lls (7| ds (r)" | 0s (1)
NR = -* — Il
SN o2  f(7) ot 7). 91 7

where IT1L = I, — aa' ||a||~>. The NSMLE (3) of 7 is actually the CMLE 7
and the associated NSCRB is:

—1
NSCRB, = E,,»[CCRB, (a)], CCRB, (a) = 0% (Qh (7) HaHQ) |

where CC RB.- is associated to the CMLE. First, it has been shown, in the case
of a vector of unknown parameters 7, that asymptotically where T" — o0:

Cy (%) > Cy(7) = UCRB, > CCRB;, (11)

which illustrates that the act of resorting to the NSMLE (here the CMLE) is in
general an asymptotic suboptimal choice in the MSE sense. However, in the case
of single unknown parameter 7, (11) becomes:

Co(T) =Co(T) =UCRB;,,

which highlights that in some particular cases the NSMLE may be asymptotically
equivalent to the MLE in the MSE sense. Second, if 7" > 2:
NSCRB, NSCRB, T  SNR

UCRB,  Cy(7) T—-1SNR+1

which illustrates the facts that NSLB are not in general neither upper bounds on

the MSE of MLEs nor on any of its LBs

(12)
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