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Why interesting? Goal: find privacy-utility tradeoff and optimal () Validation on synthetic data
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The system model Given P, p, 0, the optimal € becomes ¢ ¢ ¢

p =0.25 Agg. sum of local signals Avg. consensus of local signals
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Fach sensori =1,2..... N Compare randomized requantization (RR) with perturbation method in the

sparse Fourier transform domain
e RR works better, more consisitent
e RR adds in much smaller noise
e RR scales better with network size

Channel

e measures a r.v. X, ~ P where the distribution P is unknown but in a T'he above optimization problem is a constrained quasi-convex
set P of distributions on an alphabet X C R. optimization problem, and can be solved by bisection method.

e transmits private version Y; € Y, where | )| < |X|.

Randomized requantization: map X; — Y, using channel Q(y|x). Solving the optimization problem
Server goal: estimate a linear combination of Xj's. Ongoing work and further directions

Pe rfOrm ance metrics Privacy(e)-Compression(p)-Utility(0) Tradeoff

. _ Minimum achievable privacy o Optimizing over reconstruction ) (c.f. Lloyd-Max).
Local differential privacy [puchi et al. '13] : level €* given (9, p) value e Use privacy allocation to apportion resources in networks:

The adversary’'s likelihood of guessing that the input sample was x over pairs, finding o individuals have different privacy budget €;, €9, ..., ex
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