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Why interesting?

Goals for future sensor networks such as IoT:

• limit resource consumption

• protect private information

• maintain data fidelity

What are the tradeoffs between these criteria?

The system model
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Each sensor i = 1, 2, . . . , N

• measures a r.v. Xi ∼ P where the distribution P is unknown but in a
set P of distributions on an alphabet X ⊂ R.

• transmits private version Yi ∈ Y , where |Y| ≤ |X |.
Randomized requantization: map Xi→ Yi using channel Q(y|x).
Server goal: estimate a linear combination of Xi’s.

Performance metrics

Local differential privacy [Duchi et al. ’13] :
The adversary’s likelihood of guessing that the input sample was x over
x′ doesn’t increase more than eε after observing the released value y:

P (X = x)

P (X = x′)
≤ P (X = x|Y = y)

P (X = x′|Y = y)
· eε

Q(y|x)
Q(y|x′)

≤ eε (by Bayes’s rule)

Compression ratio:

Bit Rate ∝ log2|X |

Cmp. Ratio ρ =
log2|Y|
log2|X |

Utility (mse):

δ = EP×Q[d(X, Y )] =∑N
i=1

∑N̂
j=1P (xi)Q(yj|xi)(xi − yj)2

Goal: find privacy-utility tradeoff and optimal Q

The set of ε-locally differentially private channels and the set of channels
yielding expected distortion no greater than δ are defined by

QLDP(ε) =

{
Q(y|x) : log

Q(y|x)
Q(y|x′)

≤ ε, ∀(x, x′, y) ∈ X × X × Y
}

QMSE(δ) =

{
Q(y|x) : max

P∈P
EP×Q(d(X, Y )) ≤ δ

}
Given P , ρ, δ, the optimal ε becomes

ε∗(P , ρ, δ) ={QLDP ∪QMSE 6= ∅}
⇓

minimize eε

s.t. max
P∈P

EP×Q[d(X, Y )] ≤ δ,

0 � Q � 1,

Q · 1̂|Y| = 1|X |.

Theorem

The above optimization problem is a constrained quasi-convex
optimization problem, and can be solved by bisection method.

Solving the optimization problem
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Minimum achievable privacy
level ε∗ given (δ, ρ) value
pairs, finding
(ε, δ, ρ)-tradeoff.

• for fixed ρ, standard
δ ↑↔ ε ↓ tradeoff

• across cmp. ratios,
achievable ε quite small
under small δ

• can halve bit rate
without sacrificing
privacy

Validation on synthetic data
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Compare randomized requantization (RR) with perturbation method in the
sparse Fourier transform domain

• RR works better, more consisitent

• RR adds in much smaller noise

• RR scales better with network size

Ongoing work and further directions

• Optimizing over reconstruction Y (c.f. Lloyd-Max).
• Use privacy allocation to apportion resources in networks:
• individuals have different privacy budget ε1, ε2, . . . , εN
• multiple servers trying to access the same data
• gateway has to manage constraints and demands
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