
A LOW-LATENCY SPARSE-WINOGRAD ACCELERATOR FOR CONVOLU-
TIONAL NEURAL NETWORKS
Haonan Wang, Wenjian Liu, Tianyi Xu, Jun Lin and Zhongfeng Wang
Department of Electronic Science and Engineering, Nanjing University, P.R. China

Motivation

Leverage Sparsity and Winograd Algorithm [1]

• Make Winograd orthogonal to pruning

• Fully exploit sparsity in the dataflow

Drawbacks of current accelerators

• Only support Winograd or pruning

• Fail to use the sparsity in activations

Main Contributions

• A hardware architecture is designed to effi-
ciently support sparse models and leverage
Winograd Algorithm

• Sparsity in both activations and weights are
fully utilized via fast mask indexing scheme

• The FMI module is proposed to eliminate all
redundant multiplication operations and the
corresponding cycles

Architecture
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Figure 1: Scheme of Fast Mask Indexing
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Figure 2: Overview of architecture

Computation flow

• Step 1: Activation tensors are split into tiles, then
Winograd transformation and ReLU operation are
performed. Both sparse activations and pre-trained
Winograd weights are labeled with mask index.

• Step 2: Each cycle, one PE processes multiplications
with non-zero values poped from the FMI module
according to the XOR-ed index.

• Step 3: The dataflow exploits weight-stationary
scheme, so results of multiplications are accumulat-
ed to the partial sums via FIFOs. When an output
tile is ready, post-processing is instantly performed.

Architecture

• Global Buffer unit is a SRAM which stores interme-
diate data, forming an inter-module pipeline.

• PE Local Buffer saves weights for reusing.

• EWMM modules continuously process non-zero
multiplications and dump the results to FIFOs.

• Partial sums are read from the Accumulation Buffer
to be added with outputs of FIFOs and then are re-
stored. The adder tree is used to sum all channels.
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Comparisons

Work [2] [3] Ours
Precision 16bits fixed 16bits fixed 16bits fixed

Board ZC706 ZC706 ZC706
Freq. (MHz) 166 166 250
BRAM (Kb) 540x18 732x18 528x18

DSP 532 768 380
LUT 90k 155k 93k

Flip-Flop 92k 153k 96k

Table 1: Implementation Results and Comparisons
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