
A LOW-LATENCY SPARSE-WINOGRAD ACCELERATOR FOR CONVOLU-
TIONAL NEURAL NETWORKS
Haonan Wang, Wenjian Liu, Tianyi Xu, Jun Lin and Zhongfeng Wang
Department of Electronic Science and Engineering, Nanjing University, P.R. China

Motivation

Leverage Sparsity and Winograd Algorithm [1]

• Make Winograd orthogonal to pruning

• Fully exploit sparsity in the dataflow

Drawbacks of current accelerators

• Only support Winograd or pruning

• Fail to use the sparsity in activations

Main Contributions

• A hardware architecture is designed to effi-
ciently support sparse models and leverage
Winograd Algorithm

• Sparsity in both activations and weights are
fully utilized via fast mask indexing scheme

• The FMI module is proposed to eliminate all
redundant multiplication operations and the
corresponding cycles

Architecture

0 2 0 4 6

0 1 0 1 1

0 3 5 0 7

0 1 1 0 1
w_value

w_index

act_value

act_index
XOR

0 1 0 0 1

FMI FMIPop the rightest value

6 7PE

FIFO

Figure 1: Scheme of Fast Mask Indexing

Tile
Uin s
TileTiling

Units

Trans.
Uints

Trans.
Uints

Trans.Trans.
Units

EWMM
PE cluster
EWMM

PE cluster
EWMM

PE cluster
EWMM

PE clusters

Controller

Activation
DRAM

Accumulation 
BufferPost & 

Stitch 
Module

E
x
te

r.
lo

o
p

DRAM

B
ro

a
d

c
a
st

PE
Local
Buffer

PE
Local
Buffer

PE
Local
Buffer

PE
Local
Buffer

Accumulation 
Buffer

Accumulation 
Buffer

Accumulation 
Buffer

Adder
Tree

Cp/4

Ap
FIFO

...
FIFO

FIFO
...

FIFO

FIFO
...

FIFO

FIFO
...

FIFO

Cp

BankBankBankBank

BankBankBankBank

BankBankBankBank

BankBankBankBank
Global

On-chip
Buffer

Weight
Buffer

Figure 2: Overview of architecture

Computation flow

• Step 1: Activation tensors are split into tiles, then
Winograd transformation and ReLU operation are
performed. Both sparse activations and pre-trained
Winograd weights are labeled with mask index.

• Step 2: Each cycle, one PE processes multiplications
with non-zero values poped from the FMI module
according to the XOR-ed index.

• Step 3: The dataflow exploits weight-stationary
scheme, so results of multiplications are accumulat-
ed to the partial sums via FIFOs. When an output
tile is ready, post-processing is instantly performed.

Architecture

• Global Buffer unit is a SRAM which stores interme-
diate data, forming an inter-module pipeline.

• PE Local Buffer saves weights for reusing.

• EWMM modules continuously process non-zero
multiplications and dump the results to FIFOs.

• Partial sums are read from the Accumulation Buffer
to be added with outputs of FIFOs and then are re-
stored. The adder tree is used to sum all channels.

Acknowledgment

This work was supported in part by the National Natural Science Foundation of China under Grants No. 61774082 and 61604068;
the Fundamental Research Funds for the Central Universities under Grant No. 021014380065

Comparisons

Work [2] [3] Ours
Precision 16bits fixed 16bits fixed 16bits fixed

Board ZC706 ZC706 ZC706
Freq. (MHz) 166 166 250
BRAM (Kb) 540x18 732x18 528x18

DSP 532 768 380
LUT 90k 155k 93k

Flip-Flop 92k 153k 96k

Table 1: Implementation Results and Comparisons

0

10

20

30

40

50

conv3-4 conv5-7 conv8-10 conv11-13

La
te

n
cy

 (
m

s)

[2]

[3] 

Ours

References

1. Liu, Xingyu, et al. "Efficient sparse-winograd convolutional neural networks." arXiv preprint arXiv:1802.06367 (2018).

2. Lu, Liqiang, et al. "Evaluating fast algorithms for convolutional neural networks on FPGAs." 2017 IEEE 25th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, 2017.

3. Lu, Liqiang, and Yun Liang. "SpWA: An efficient sparse winograd convolutional neural networks accelerator on FPGAs." 2018
55th ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, 2018.

1


