# A LOW-LATENCY SPARSE-WINOGRAD ACCELERATOR FOR CONVOLU-TIONAL NEURAL NETWORKS

## Haonan Wang, Wenjian Liu, Tianyi Xu, Jun Lin and Zhongfeng Wang Department of Electronic Science and Engineering, Nanjing University, P.R. China

#### Motivation

#### Leverage Sparsity and Winograd Algorithm [1]

- Make Winograd orthogonal to pruning
- Fully exploit sparsity in the dataflow

#### **Drawbacks of current accelerators**

- Only support Winograd or pruning
- Fail to use the sparsity in activations

#### Comparisons

| Work        | [2]          | [3]          | Ours         |
|-------------|--------------|--------------|--------------|
| Precision   | 16bits fixed | 16bits fixed | 16bits fixed |
| Board       | ZC706        | ZC706        | ZC706        |
| Freq. (MHz) | 166          | 166          | 250          |
| BRAM (Kb)   | 540x18       | 732x18       | 528x18       |
| DSP         | 532          | 768          | 380          |
| LUT         | 90k          | 155k         | 93k          |
| Flip-Flop   | 92k          | 153k         | 96k          |

#### **Table 1:** Implementation Results and Comparisons

#### References

- 1. Liu, Xingyu, et al. "Efficient sparse-winograd convolutional neural networks." arXiv preprint arXiv:1802.06367 (2018).
- 2. Lu, Liqiang, et al. "Evaluating fast algorithms for convolutional neural networks on FPGAs." 2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, 2017.
- 3. Lu, Liqiang, and Yun Liang. "SpWA: An efficient sparse winograd convolutional neural networks accelerator on FPGAs." 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, 2018.

### Main Contributions

- A hardware architecture is designed to efficiently support sparse models and leverage Winograd Algorithm
- Sparsity in both activations and weights are fully utilized via fast mask indexing scheme
- The FMI module is proposed to eliminate all redundant multiplication operations and the corresponding cycles



#### Architecture



**Figure 1:** Scheme of Fast Mask Indexing



Figure 2: Overview of architecture

#### **Computation flow**

#### Architecture

#### Acknowledgment

This work was supported in part by the National Natural Science Foundation of China under Grants No. 61774082 and 61604068; the Fundamental Research Funds for the Central Universities under Grant No. 021014380065



• Step 1: Activation tensors are split into tiles, then Winograd transformation and ReLU operation are performed. Both sparse activations and pre-trained Winograd weights are labeled with mask index.

• **Step 2:** Each cycle, one PE processes multiplications with non-zero values poped from the FMI module according to the XOR-ed index.

• Step 3: The dataflow exploits weight-stationary scheme, so results of multiplications are accumulated to the partial sums via FIFOs. When an output tile is ready, post-processing is instantly performed.

• Global Buffer unit is a SRAM which stores intermediate data, forming an inter-module pipeline.

• PE Local Buffer saves weights for reusing.

• EWMM modules continuously process non-zero multiplications and dump the results to FIFOs.

• Partial sums are read from the Accumulation Buffer to be added with outputs of FIFOs and then are restored. The adder tree is used to sum all channels.