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Abstract—Identifying a signal’s origin and how it was acquired is
an important forensic problem. While forensic techniques currently
exist to determine a signal’s acquisition history, these techniques do
not account for the possibility that a signal could be compressively
sensed. This is an important problem since compressive sensing
techniques have seen increased popularity in recent years. In
this paper, we propose a set of forensic techniques to identify
signals acquired by compressive sensing. We do this by first
identifying the fingerprints left in a signal by compressive sensing.
We then propose two compressive sensing detection techniques
that can operate on a broad class of signals. Since compressive
sensing fingerprints can be confused with fingerprints left by
traditional image compression techniques, we propose a forensic
technique specifically designed to identify compressive sensing in
digital images. Additionally, we propose a technique to forensically
estimate the number of compressive measurements used to acquire
a signal. Through a series of experiments, we demonstrate that
each of our proposed techniques can perform reliably under real-
istic conditions. Simulation results show that both our zero ratio
detector and distribution-based detector yield perfect detections
for all reasonable conditions that compressive sensing is used in
applications, and the specific two-step detector for images can at
least achieve probability of detection of 90% for probability of false
alarm less than 10%. Additionally, our estimator for the number
of compressive measurements can well reflect the real number.

I. INTRODUCTION

Since the initial development of digital multimedia forensics,
researchers have sought to identify how different digital signals
were captured and stored. Information about how a signal was
acquired can be used to both identify the specific device used
to capture the signal and to verify the signal’s authenticity.
Furthermore, knowledge of how a signal was captured can be
used to help trace its processing history. As a result, determining
how a signal was acquired has become an important forensic
problem.

Typically, forensic algorithms determine how a signal was
acquired by identifying imperceptible traces introduced into
a digital signal during the acquisition process. These traces,
which are known as fingerprints, arise due to properties of the
sensor used to capture the signal or as a result of the signal
processing operations used to form the digital signal. Existing
forensic algorithms capable of identifying a signal’s acquisition
history are focused almost exclusively on images and videos
[1]–[5]. While each of these specifically designed techniques
performs strongly, it is necessary to develop forensic algorithms
capable of identifying the acquisition history of a broader class
of signals.

Recently, a new method of capturing signals known as com-
pressive sensing has gained considerable attention. Compressive
sensing is a signal processing technique capable of acquiring
sparse signals at sampling rates below the Nyquist rate [6].
Rather than measuring the signal’s value at a series of uniformly
spaced points, each compressive measurement corresponds to
a randomly weighted summation of the entire signal. The
sparse signal can then be reconstructed using l1 minimization
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from much fewer measurements than are needed by traditional
uniform sampling [7]. Furthermore, many real signals that are
not ideally sparse can be modeled as either sparse signals
in the presence of noise or signals that are ‘nearly sparse’.
Compressive sensing can be used to acquire these signals with
low amounts of reconstruction error [8].

Due to the effectiveness of compressive sensing’s sub-
Nyquist acquisition rate, researchers in various signal process-
ing fields have applied compressive sensing techniques to many
signal acquisition systems. These applicable fields include but
not limited to magnetic resonance imaging [9], photoacoustic
imaging [10], astronomical imaging [11], radar [12], electro-
cardiography [13], networked data [14], and speech and audio
[15].

While acquisition schemes based on compressive sensing
principles are widely studied in the realm of research, the impact
of compressive sensing has led people to design and build
real devices based on this technique. Single pixel or single
sensor acquisition devices have been developed for capturing
conventional images [16] and hyperspectral images [17]. In
these applications, compressive sensing not only reduced the
acquisition power but also solved the ‘out of focus’ problem
encountered in traditional cameras [16]. Moreover, due to the
power consumption of billions of A-to-D conversion in video
acquisition, a custom CMOS chip was designed by adopting
compressive sensing technology to slash energy consumption by
a factor of 15 [18]. Devices that apply compressive sensing to
other applicable signals have also been developed and built [19].
Researchers from Rice University have even started a company,
called InView, to develop low cost shortwave infrared cameras
using compressive sensing [20].

While an increasing number of technologies have begun to
make use of compressive sensing, there are currently no existing
forensic techniques capable of differentiating between signals
captured using compressive sensing and those captured by
traditional uniform sampling. This has important consequences
for the forensics community.

As the number of devices that incorporate compressive sens-
ing into their signal processing pipeline increases, detecting the
use of compressive sensing will become an important part of
forensically identifying a signal’s origin. A motivating example
can be seen in hyperspectral imaging, which is used in many
critical applications such as surveillance drones and environ-
mental monitoring. Compressive sensing has been recently used
to capture and store hyperspectral images [21]. Detecting evi-
dence of compressive sensing in a hyperspectral image can help
forensic investigators identify the device. Furthermore, there
may be scenarios where our government is presented with an
image captured by another government’s surveillance drone. In
this scenario, we may want to analyze the image to 1) verify the
validity of the image and 2) understand the capabilities of the
other government’s surveillance drone. Similarly, hyperspectral
images of landscapes may potentially be used in court cases
related to environmental contamination or mineral rights.

Additionally, the use of compressive sensing can affect the
output of existing forensic algorithms. For example, compres-
sive sensing may also be used to acquire, compress, and store
certain types of images [21]. However, existing compression
detection schemes in [22] and [23] may misidentify a com-
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pressively sensed image as an image that has been captured
by a standard digital camera, then subsequently compressed.
Thus, it is necessary to design a specific forensic scheme for
compressive sensing detection to solve such confusions. In
summary, it is clear that the identification of compressively
sensed signals is an important forensic problem.

In this paper, we propose a new forensic technique capable
of identifying signals that have been acquired by compressive
sensing. We begin by identifying the fingerprints that com-
pressive sensing introduces into a signal. Because virtually
no compressively sensed signal is truly sparse, we show that
the reconstruction error introduced into compressively sensed
signals has certain characteristics. We use these characteristics
as compressive sensing’s fingerprints and examine these finger-
prints under three models commonly applied to compressively
sensed signals: sparse signals in the presence of noise, nearly
sparse signals, and nearly sparse signals in the presence of
noise. We then propose a set of forensic techniques to identify
compressively sensed signals that fit each of these models. Fur-
thermore, we develop a forensic technique specifically designed
to identify compressively sensed images and differentiate them
from images that have undergone traditional lossy compression.
Additionally, we propose a technique to forensically estimate
the number of compressive measurements used to acquire a
signal.

The remainder of this paper is organized as follows. In
Section II, we provide a brief review of compressive sensing and
present three different models of compressively sensed signals.
In Section III, we identify and analyze the fingerprints left in
a signal by compressive sensing. Using these fingerprints, we
propose two different compressive sensing detection techniques
in Section IV. To address specific challenges encountered when
identifying compressive sensing in digital images, we present
a two step compressive sensing detection technique that can
discriminate between images that have been compressed using
wavelet-based coders and images that have been compressively
sensed in Section V. In Section VI, we propose an estimator
for the number of compressive measurements used to acquire a
signal. A series of experimental results are presented in Section
VII that demonstrate the effectiveness of our proposed forensic
techniques. Finally, in Section VIII we conclude this paper.

II. SYSTEM MODEL

We begin this section by providing a brief overview of
compressive sensing. We then discuss the three different models
used for real world signals that are compressively sensed.
Throughout this paper, we will use s and x to denote the
original signal and the observed signal, respectively. Given the
observed signal may be obtained by either traditional sensing
or compressive sensing, it will correspondingly equal to the
direct, maybe noisy, observation of the original signal, or the
reconstructed one from compressive measurements.

A. Compressive Sensing Overview

Traditionally, a discretely indexed signal is formed from a
continuously indexed signal through uniform sampling. During
uniform sampling, observations of the continuously indexed
signal are performed at uniformly spaced intervals over a fixed
duration. As a result, each entry si in a discretely indexed
signal s = (s1, s2, . . . , sn)

T corresponds to a single, direct
measurement of the continuously indexed signal, and we di-
rectly observe these measurements in traditional sensing. Thus,
if we use x to denote the observed signal in such case, then
x = s.

The recent development of compressive sensing has allowed
sparse signals, which have only a few nonzero entries, to be
captured with far fewer observations than traditional sampling.
During compressive sensing, each compressive measurement
corresponds to a linear combination of the continuously indexed
signal’s values at all the locations that would be observed
during uniform sampling. Defining the weighting vector for
the ith compressive measurement as φ

i
, then each compressive

measurement yi can be written as
yi = φT

i
s. (1)

If m(m ≪ n) compressive measurements are collected, the
transpose of the set of weighting vectors can be vertically
concatenated to form the observation matrix Φ. As a result,
the measurement vector y = (y1, y2, . . . , ym)T containing each
compressive measurement can be written as

y = Φs. (2)
Typically, random matrices are used for observation matrices
Φ in order to satisfy the restricted isometry property for later
reconstruction [8]. In this paper, we use Gaussian distribution
with zero mean and unit variance to generate matrix Φ.

After the compressive measurements are obtained, the dis-
cretely indexed signal x, which we will observe from compres-
sive sensing, is reconstructed from the compressive measure-
ments. This is done by solving the following constrained l1
minimization problem

min
x̃

||x̃||l1 , s.t. Φx̃ = y. (3)

If s is sparse, then given enough compressive measurements,
O(k log n), where k and n are the sparsity and length of s
respectively, the signal can be perfectly reconstructed, i.e. x = s
[7].

Compressive sensing forensics, however, is a reverse engi-
neering problem of compressive sensing, which starts from the
reconstructed signal and tries to reveal how the signal was
acquired. Forensic investigators only observe a reconstructed
signal x. Then, based on the fingerprints extracted from this sig-
nal, they identify whether the observed signal was traditionally
sensed or compressively sensed and reconstructed. Furthermore,
forensic investigators can also estimate the number of compres-
sive measurements m solely based on the reconstructed signal.

B. Signal Model
In theory, if a truly sparse signal is compressively sensed,

it can be perfectly reconstructed [7]. In practice, however, this
is rarely the case. Often, the compressive measurements of a
truly sparse signal will be corrupted by noise. This can occur
due to sensing in a noisy environment or due to noise within
the sensors themselves. Furthermore, it is often the case that
signals of interest are not truly sparse, but rather nearly sparse
or ‘compressible’. While non-sparse but compressible signals
cannot be perfectly reconstructed, a bound can be placed on the
reconstruction error [8]. If enough compressive measurements
are captured, the reconstruction error can be made sufficiently
small.

Here, we discuss several commonly used models applied to
signals that are compressively sensed in real world scenarios. In
subsequent sections, we will exploit the effects of these nonideal
conditions to identify the use of compressive sensing.
Sparse Signals in the Presence of Noise

There are many scenarios in which a true signal has only
a few nonzero coefficients (i.e., nonzero entries si in s), but
the signal is corrupted by noise during sensing. These signals
can be modeled as sparse signals in the presence of noise. For
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Fig. 1. Fingerprints of compressive sensing for sparse signals in the presence of measurement noise or environment noise. The upper row shows the observed
signals from (a) traditional sensing, (b) compressive sensing corrupted with measurement noise and (c) compressive sensing corrupted with environment noise.
The bottom row shows the corresponding noise histograms of the observed signals above.

example, in radar signal analysis the time-frequency plane is
discretized into a grid where the number of grid cells is much
larger than the total number of targets. The radar coefficients
under this time-frequency shift operator basis are modeled as
sparse signals in the presence of noise [24].

Under this model, let s represent a sparse signal to be sensed.
If s is sensed using traditional uniform sampling, the observed
signal x is given by

x = s +η. (4)
where η is a vector containing i.i.d. noise. Regardless of whether
the noise originates in the sensor or is due to an environmental
source, a unique noise measurement occurs at each signal
observation xi.

If s is compressively sensed, however, noise can be in-
troduced into the compressive measurements. Under some
scenarios, additive noise directly corrupts each compressive
measurement [24]. This is equivalent to sensing using a noisy
sensor. We refer to this type of noise as measurement noise,
and model the compressive measurements as

y = Φ s +ηm, (5)
where ηm is i.i.d. noise. In other scenarios, the sparse signal
directly mixes with some noise process while it is being sensed
[15]. We refer to this type of noise as environment noise.
We model compressive measurements in the presence of i.i.d.
environment noise ηe as

y = Φ(s +ηe). (6)
If the compressive measurements are corrupted by either

measurement or environment noise, the sparse signal is no
longer reconstructed using (3). Instead, the reconstructed signal
x is obtained by solving

min
x̃

||x̃||l1 , s.t. ||y − Φx̃||2l2 ≤ ϵ (7)

where ϵ is a parameter that depends on the noise power [25].
We note that in this equation, the constraint present in (3) is
replaced with the inequality ||y − Φx̃||2l2 ≤ ϵ.

Nearly Sparse Signals
While many important types of signals are not truly sparse,

they satisfy certain conditions allowing them to be well approx-
imated by sparse signals. These signals are known as nearly
sparse or compressible signals. The discrete wavelet transform

coefficients of a digital image corresponding to a natural scene
are a widely used example of a nearly sparse signal [26].
Gabor coefficients of certain classes of oscillatory signals can
also be modeled as nearly sparse signals [27]. Though nearly
sparse signals cannot be perfectly reconstructed if they are
compressively sensed, they can be reconstructed with little error
if enough compressive measurements are obtained.

To formally define nearly sparse signals, we first sort the
entries of the signal s in descending order s(1), s(2), . . . , s(n),
such that |s(1)| ≥ |s(2)| ≥ . . . ≥ |s(n)|. The signal s is
compressible if and only if its sorted coefficients fall inside
a weak lp ball of radius R for some 0 < p < ∞ [8], i.e.

|s(i)| ≤ R · i−1/p, i = 1, 2, . . . , n. (8)
We model nearly sparse signals as compressible signals whose
entries are i.i.d. random variables. Signals drawn from many
commonly occurring distributions such as the Laplace and
Gaussian distributions are compressible [8].
Nearly Sparse Signals in the Presence of Noise

In some real world scenarios, a nearly sparse signal may be
compressively sensed in a noisy environment. As a result, we
adopt nearly sparse signals in the presence of noise as a third
signal model. These signals can be viewed as a combination of
the previous two models. Provided that the noise power is suf-
ficiently small, nearly sparse signals will remain compressible
when corrupted by noise. As a result, we will see that detecting
compressive sensing in signals that fit this models is similar to
detecting compressive sensing in nearly sparse signals.

III. COMPRESSIVE SENSING FINGERPRINTS

To identify the fingerprints left by compressive sensing, we
first examine sparse signals in the presence of noise, then
examine nearly sparse signals.

Consider a signal x formed by sensing a sparse signal s
in the presence of noise. Assuming that the locations of the
nonzero components of s are known, the entries of x that do
not correspond to nonzero values can be gathered together to
form the vector xn . If x was acquired using traditional uniform
sampling, each entry in xn will directly correspond to a single
noise observation. As a result, the normalized histogram of xn

approximates the distribution of the noise source. This can be
seen in Fig. 1(d).
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Fig. 2. Example showing the fingerprints of compressive sensing in a nearly
sparse signal with and without the presence of noise. The top row shows the
histograms observed from a nearly sparse signal after (a) traditional sensing
and (b) compressive sensing. The bottom row shows the histograms observed
from a nearly sparse signal in the presence of noise after (c) traditional sensing
and (d) compressive sensing.

This is not the case, however, if x was acquired via com-
pressive sensing. If measurement noise is encountered during
sensing, the noise affects each compressive measurement. Dur-
ing reconstruction, no single value of x will correspond to a
single noise observation. If environment noise is present during
compressive sensing, both the sparse signal and the noise will
be captured during the measurement process. Reconstructing the
signal by solving (7), however, ensures that x will accurately
reconstruct the s but not the noise. As a result, if x was captured
using compressive sensing, the normalized histogram of xn will
not match the distribution of the noise source. In fact, because x
was chosen to maximize the sparsity of the reconstructed signal,
a significant number of entries in xn will be zero or near zero.
This will result in the presence of an impulsive peak at zero in
the normalized histogram of xn as can be seen in Fig.s 1(e) and
(f). This peak is the fingerprints left by compressive sensing for
sparse signals in the presence of noise.

A similar effect can be observed if x was formed by sensing a
nearly sparse signal. As it is shown in Fig. 2(a), the normalized
histogram of traditionally sensed signal x will closely match
the distribution of the nearly sparse signal being sensed. How-
ever, the use of compressive sensing will greatly increase the
histogram’s kurtosis and result in a big concentration at zero as
can be seen in Fig. 2(b). Furthermore, this result holds true for
nearly sparse signals in the presence of noise, as can be seen
in Fig. 2(c) and (d).

To show the effectiveness of compressive sensing fingerprints
in real applications, we take a hyperspectral image, which is
shown in Fig. 3(a), as an example. Hyperspectral images are
composed of many sub-images in different spectrum bands,
each of which can be obtained by compressive sensing [17].
Therefore, in this example, we take one sub-image out to
examine. Comparing the traditionally sensed sub-image in Fig.
3(b) and the compressively sensed image in Fig. 3(c), we can
hardly tell the difference. However, the histogram of transform
domain coefficients from compressively sensed image, as it is
shown in Fig. 3(d), has a much higher kurtosis at zero than that
from the traditionally sensed image, which is shown in Fig.
3(e).

Furthermore, in order to show that such fingerprints also exist
in real compressive sensing devices, we examine a single pixel
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Fig. 3. (a) A hyperspectral image taken from [28] with dimension 1024×1024
pixel. (b) It’s monochromatic image (obtained from raw data) corresponding
to wavelength of 400nm. (c) The same monochromatic image obtained by
compressive sensing and reconstructed from 10242 × 50% compressive mea-
surements. (d) and (e) Histograms of DWT subband 3 coefficients from (d) the
traditionally sensed image and (e) the compressively sensed image.

camera captured image and an image of the same scene but
being captured by a traditional digital camera [29]. The single
pixel camera in [29] obtains each compressive measurement
by projecting the scene onto a randomized digital micromirror
array and optically calculate the linear combination. We use the
‘mug’ image captured by a single pixel camera in [29], as it is
shown in Fig. 4(a), to present the fingerprints of compressive
sensing. Because the reconstruction step was performed by
minimizing the total variation, the domain that compressive
sensing fingerprints are present in is the pixel variations, i.e.,
gradient magnitudes. Fig.s 4(b) and 4(c) show the histograms
of pixel variations for the traditionally sensed ‘mug’ image, and
its compressively sensed version, respectively. We can see from
Fig. 4(c) that a peak corresponding to a large concentration of
components is present at the zero bin for the compressively
sensed image. These fingerprints are absent from the tradition-
ally captured image’s histogram on the left.

We note that the compressive sensing fingerprints’ existence
is due to the sparse representation of the signal created upon
reconstruction. Because all reconstruction algorithms enforce
sparsity in one way or another, these fingerprints will be
present in the sparsity domain regardless of the reconstruction
algorithm.

Though we focus on the basis pursuit (BP) reconstruc-
tion algorithm in this paper, we note that there are several
algorithms that can be used to reconstruct a compressively
sensed signal such as orthogonal matching pursuit (OMP) [30],
least absolute shrinkage and selection operator (LASSO) [31],
and total variation (TV) [32]. We note that as long as a
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Fig. 4. An example showing compressive sensing fingerprints in the (a)
‘mug’ image captured by a single pixel camera [29]. (b) The histogram of
pixel variations (magnitude of the gradient) for the ‘mug’ image captured
by a traditional digital camera. (c) The pixel variation histogram for the
compressively sensed image of the same scene acquired using the single pixel
camera.

reconstruction algorithm seeks a sparse representation of the
compressive measurements, similar fingerprints will be present
in the reconstructed signal.

IV. COMPRESSIVE SENSING DETECTION

Now that we have identified the fingerprints left by compres-
sive sensing, we are able to develop a set of forensic techniques
to detect its use [33]. Detecting the use of compressive sensing
is equivalent to differentiating between the following hypotheses

H0 : x was obtained using traditional sampling,
H1 : x was obtained using compressive sensing, (9)

where x is a discretely indexed signal of unknown origin. To do
this, we first need to obtain some measure of the strength of any
compressive sensing fingerprints present in x . Measurement of
these fingerprints’ strength, however, depends on the appropriate
signal model for x as well as the amount of side information
known by the forensic investigator. To account for this, we
propose two different compressive sensing detection techniques
that are appropriate in different forensic scenarios.

A. Zero Ratio Detection Scheme
In many cases, a forensic investigator knows little more than

the fact that the signal in question fits one of the three signal
models outlined in Section III. If this is the case, the forensic
investigator cannot leverage any side information such as the
signal or noise distribution while measuring the strength of
compressive sensing fingerprints. The investigator can, however,
make use of the fact that if compressive sensing was performed,
it was done under nonideal conditions.

Assume temporarily that x can be modeled as a sparse signal
s sensed in the presence of noise. We assume that the noise
has a continuous distribution and a nonzero variance, i.e. its
distribution is not an impulse. From Section III, we know that
under hypothesis H0 each entry of xn will correspond directly
to a noise observation. As a result, the distribution of the entries
in xn will match the noise distribution. By contrast, under
hypothesis H1, an impulsive peak located at zero will occur
in the distribution of the entries of xn . Because of this, we can
state

P(xn
i = 0|H0) ≪ P(xn

i = 0|H1). (10)
Though a forensic investigator may not know the noise distri-
bution, the investigator can use (10) to measure the strength of

compressive sensing fingerprints by calculating the ratio of zero
valued entries in xn to its total length.

Since in practice many of the techniques used to solve (3)
or (7) result in values of xn close to but not exactly equal to
zero, we measure the strength of the fingerprints as follows. Let
Λε(x

n) denote the number of elements in xn which have an
absolute value no greater than ε. We calculate the zero ratio
fingerprints’ strength using the equation

ξz(x
n) =

Λε(x
n)

ℓ(xn)
, (11)

where ℓ(xn) is the length of the vector xn . When calculating
Λε, ε is chosen to be ε = || xn ||∞/α, where α is a parameter
that controls the range of values of xn that are counted as
zeros. Experimentally, we have observed that choosing α = 100
yields desirable results. We then perform compressive sensing
detection using the following decision rule

δz =

{
H0 if ξz(xn) < τz,
H1 if ξz(xn) ≥ τz.

(12)

where τz is a decision threshold.
In reality, the locations of the nonzero values of s may not

be known to a forensic investigator, thus making it difficult to
form xn from x . In this scenario, two approaches can be taken
to perform compressive sensing detection. Since s will contain
a small number of nonzero entries, entries in x corresponding
to these entries in s will have values significantly larger in
magnitude than the rest. In the first approach, if the entries
of x are sorted in descending order, a substantial drop in the
values of the entries of x will be observed when transitioning
between nonzero entries of s and xn . Using this information, a
threshold can be chosen to separate out xn for use in detection.
If a suitable threshold cannot be chosen to separate out xn , a
second approach can be used. In this approach, x can be used
instead of xn in the detection algorithm. Since s will have few
nonzero entries, the statistics of xn will dominate and there will
be little effect on the detection results.

Additionally, if x can be modeled as a nearly sparse signal
or a nearly sparse signal in the presence of noise, the preceding
detection technique can still be used, albeit with slight modifica-
tion. From Section III, we know that for nearly sparse signals or
nearly sparse signals in the presence of noise, the reconstruction
step in compressive sensing will result in the presence of a large
number of zero or near zero valued entries in x . As a result,
we can state

P(xi = 0|H0) ≪ P(xi = 0|H1). (13)

for nearly sparse signals and nearly sparse signals in the
presence of noise. If we substitute x for xn in equations (11),
compressive sensing can be detected in nearly sparse signals
using the decision rule δz presented in (12).

B. Distribution-based Detection Scheme
In some scenarios, the forensic investigator will have knowl-

edge about the distribution F of the noise present during sens-
ing, like the quantization noise [34], or about the distribution G
of the coefficients in a nearly sparse signal. This knowledge can
be used as side information to perform improved compressive
sensing detection. To develop a detection scheme that makes
use of this distribution information, let us examine the case of
nearly sparse signals.

Let us assume that a forensic examiner knows that the
coefficients of a nearly sparse signal are distributed according
to some parametric distribution G(θ), where the true value
of the parameter θ is unknown. Additionally, assume that the
forensic investigator knows an estimator θ̂ for the parameter
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Fig. 5. Fitting the histogram of the observed signal to the estimated signal
distribution. The Laplace distribution was used to generate each sample of the
nearly sparse signal. The left figure shows the fitting result when this signal
was obtained by traditional sensing, while the right one shows the result for a
when the signal was compressively sensed.

θ on the basis of i.i.d. realizations of G(θ). Under hypothesis
H0, each entry of x will be a direct observation of the nearly
sparse signal, therefore the entries of x will be distributed
according to G(θ). If θ̂ is calculated using the entries of x ,
an appropriately chosen measure of the distance between G(θ̂)
and the normalized histogram of x should be small. We know
from Section III, however, that under hypothesis H1 the entries
of x will no longer be distributed according to G(θ). This will
cause θ̂ to be an inaccurate estimate of θ if it is calculated
from x under hypothesis H1. Now, given an appropriately
chosen distance metric, the distance between G(θ̂) and the
normalized histogram of x will be large. This can be seen in
Fig. 5. As a result, we can measure the strength of compressive
sensing fingerprints in x by measuring the distance between the
normalized histogram of x and G(θ̂).

A problem arises when measuring the distance between these
two quantities: hk(x ) is an estimate of the probability that the
value of xi falls within the kth histogram bin, while G(θ̂, t)
is the probability that xi takes the value t. As a result, these
two quantities cannot be compared directly by any distance
measurement. To resolve this disparity, we integrate G(θ̂, t) over
each histogram bin to obtain g(θ̂) where

gk(θ̂) =

∫ b(k+1/2)

b(k−1/2)

G(θ̂, t)dt (14)

and b is the width of each histogram bin.
Let ξd(hk, gk) denote some distance measure between hk and

gk, such as mean square distance (MSD) or Kullback-Leibler
divergence (KL divergence), then, we perform compressive
sensing detection using the following decision rule

δd =

{
H0 if ξd(hk, gk) < τd
H1 if ξd(hk, gk) ≥ τd.

(15)

where τd is a decision threshold. The choice of the distance
measure ξd(hk, gk) is made based on the performance of
this compressive sensing detector in different applications. For
example, when detecting compressively sensed images, using
mean square error as the distance measure yield the best
detection performance. We will discuss this case in the next
section.

Besides the conventional distance measures, such as MSD
and KL divergence, we also propose their modified versions as
the candidates of ξd(hk, gk). These modified distance measures
take into account the particular manner in which compressive
sensing changes the distribution of the entries in x . Take the
KL divergence measure as an example. Since compressive
sensing dramatically increases the kurtosis of the distribution
of the entries in x , the most forensically significant differences
between h and g should occur around k = 0. As a result,

we modify the KL divergence to measure the strength of
compressive sensing fingerprints as follows

ξd(hk, gk) =
∑
k

wk ln
hk

gk
, (16)

where wk is a normalized set of weights used to emphasize
differences in the forensically significant region around k =
0. Since we wish to weight the regions around k = 0 more
heavily, we construct the weighting function using a Laplace
distribution. Other distributions obeying power law decay may
also be good candidates. Given that the weights are discrete,
we integrate the Laplace distribution over each histogram bin
to obtain the weighting function as follows,

wk =

{
1− e−νb/2 cosh(νk) if k = 0,
e−ν|k| sinh(νb/2) otherwise,

(17)

where the parameter ν is chosen to be

ν =
βn∑n
i=1 |xi|

, (18)

and where β is a user specified parameter that adjusts the
size of the forensically significant region. Experimentally, we
have found that β = 100 yields desirable results. Similar
modifications can be applied on other conventional distance
measures.

If the signal being examined can be modeled as a sparse
signal in the presence of noise and the forensic investigator
has a parametric model F(θ) of the noise distribution, the
detection technique presented above can be used, only with
slight modifications. Since the noise distribution rather than the
signal distribution is known, F should be substituted for G in
(14). Additionally, θ̂ should be calculated using xn and the
histogram of xn should be substituted for h(x ) in (16). If the
signal is more appropriately modeled as a nearly sparse signal
in the presence of noise, the distribution of x is given by the
convolution of G and F . If the noise distribution is unknown
or if G ∗ F is difficult or intractable, the noise distribution can
be ignored when performing compressive sensing detection as
long as the noise power is sufficiently low.

We note that, although only the original signal’s distribution
is explicitly used in this distribution-based detection scheme,
our model for compressively sensed signals has also been
implicitly applied when designing the detector. Specifically,
both detection schemes are designed based on the assumption
that the distribution of a compressively sensed signal has much
more kurtosis than that of a traditionally sensed signal. While
this is enough for identifying compressively sensed signals
from traditionally sensed signals, more explicit models for the
distribution of compressively sensed signals can be proposed
for particular applications where more complicated detection
scenarios exist. We will discuss this in detail for images in the
next section.

V. DETECTING COMPRESSIVE SENSING IN DIGITAL IMAGES

While the compressive sensing detection techniques proposed
in Section IV can be used on a wide variety of signals, in
some scenarios it is desirable to create a compressive sensing
detection technique specifically tailored to a particular class of
signals. This is the case for digital images.

An image’s compression history can reveal important infor-
mation about how an image was captured and stored. It can also
reveal important information about the device used to capture
an image [3]. As a result, a variety of techniques have been
developed to determine if an image was previously compressed.
Fingerprints left by compressive sensing, however, can be mis-
taken for traditional image compression fingerprints by existing
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Fig. 6. Histograms of DWT coefficients taken from uncompressed Lena (left), the same image after JPEG 2000 compression (right), and the reconstructed
compressively sensed Lena (center).

forensic techniques such as those proposed by Lin et al. [22] and
Luo et al. [23]. As a result, when we are given a compressively
sensed and reconstructed image, it may be easily misidentified
as a traditionally sensed and compressed image. In this section,
we propose a forensic technique specifically designed to both
detect evidence of compressive sensing in digital images and
to differentiate compressive sensing fingerprints from those left
by traditional forms of image compression.

A. Compressive Sensing Fingerprints in Digital Images
Since the pixel values of an image do not form a sparse

signal, digital images may not initially seem well suited for
compressive sensing. It is well known, however, that within
each subband, the set of discrete wavelet transform (DWT)
coefficients of a natural image are sparse. As a result, com-
pressive sensing reconstruction is often performed on images
in the wavelet domain.

From our discussion of compressive sensing fingerprints in
Section III, we would naturally expect an impulsive peak to
occur at zero in the DWT coefficient distribution of a compres-
sively sensed image. While this is true after the compressively
sensed DWT coefficients are reconstructed, the inverse DWT
of the image must be performed and the resulting pixel values
must be projected back into the set {0, . . . , 255} of allowable
pixel values. This will introduce a small but nontrivial amount
of noise into the DWT coefficients when DWT is applied to
the image again to extract the coefficients. As a result, the
peak in the image’s DWT coefficient distribution at zero will
no longer correspond to an impulse. Though the peak will be
slightly smoothed by this noise source, the DWT coefficient
distribution of a compressively sensed image will still exhibit a
large degree of kurtosis, as can be seen in Fig. 6. We use this
characteristic feature of a compressively sensed image’s DWT
coefficient distribution as the fingerprints.

Wavelet-based image compression techniques such as JPEG
2000 and SPIHT also introduce fingerprints in an image’s DWT
coefficient distribution. During compression, these techniques
use a bit-plane encoder to store the most significant digits of
each DWT coefficient in a subband. This has the same effect
as quantizing each DWT coefficient. As a result, the DWT
coefficients in an image compressed using a wavelet-based
technique will tightly cluster around certain values, forming
a series of peaks in the DWT coefficient distribution that
can be seen in the rightmost plot in Fig. 6. These peaks are
the fingerprints of wavelet based image compression. Since
the most prominent peak occurs at zero, compressive sensing
fingerprints and wavelet-based compression fingerprints can
easily be confused by existing detectors.

To demonstrate that compression history detection techniques
can mistake compressive sensing fingerprints for JPEG 2000
compression fingerprints, we performed an experiment using
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Fig. 7. ROC curves obtained by using the image compression detection
technique in [22] to identify JPEG 2000 compression in a set of unaltered and
JPEG 2000 compressed images (left) and a set of unaltered and compressively
sensed images (right). In the right figure “false alarms” correspond only to
unaltered images misclassified as JPEG 2000 compressed. Since there is no
JPEG 2000 compressed image in the seconde test set, the results in the right
figure demonstrate that compressive sensing can be easily misidentified as JPEG
2000 compression.

the compression history detection technique proposed in [22].
When performing this experiment, we used the Uncompressed
Colour Image Database (UCID) [35] to create a testing database
of 300 unaltered images, 300 JPEG 2000 compressed images,
and 300 compressively sensed images. First, we evaluated
the baseline performance of the wavelet-based compression
detection technique from [22] by using it to distinguish between
the set of unaltered and JPEG 2000 compressed images. An
ROC curve showing the results of this experiment is displayed
in the left figure of Fig. 7, which shows that this technique
can reliably detect wavelet-based compression. Next, we used
this technique to identify evidence of JPEG 2000 compres-
sion in the set of compressively sensed and unaltered images.
Since none of the images in this second experiment were
compressed using JPEG 2000, we would expect the detector
to find no evidence of JPEG 2000 compression. An ROC
curve showing the results of this experiment is displayed in
the right figure of Fig. 7. “false alarms” correspond only to
unaltered images misclassified as JPEG 2000 compressed, and
“detections” correspond to compressively sensed images been
identified as JPEG 2000 compressed images. These results show
that compressively sensed images can be easily misidentified as
images that have undergone JPEG 2000 compression by existing
forensic techniques. This reinforces the need for a technique
to distinguish between compressive sensing and traditional
wavelet-based compression.

Moreover, while the proposed universal detection schemes in
Section IV can be used on images to distinguish compressively
sensed images from traditionally sensed images, their perfor-
mance may be affected when traditionally sensed but wavelet-
based compressed images are involved in the acquisition de-
tection analysis. To demonstrate this, we used the universal
detector proposed in section IV-B to differentiate between com-
pressively sensed images and both uncompressed traditionally



8

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Probability of False Alarm

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Probability of False Alarm

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

Fig. 8. ROC curves obtained by using the proposed scheme in Section IV-B
to identify compressively sensed images from traditionally sensed images (left)
and to identify compressively sensed images from traditionally sensed but JPEG
2000 compressed images (right).

sensed images as well as traditionally sensed images that have
been compressed using JPEG 2000. The results of this experi-
ment are shown in Fig. 8. The left figure demonstrates that our
proposed general compressive sensing detection scheme can be
successfully used on image signals. While the right figure shows
the degradation of this scheme’s performance when traditionally
sensed but JPEG 2000 compressed images are involved in
the analysis. Therefore, in order to determine the acquisition
process of an image signal and identify compressive sensing,
we need more specific models for compressively sensed images
to distinguish them from traditionally sensed but wavelet-based
compressed images.

B. DWT Coefficient Distribution Models

Because both compressive sensing fingerprints and wavelet-
based compression fingerprints present themselves in an image’s
DWT coefficient distribution, we must adopt a set of models for
an image’s DWT coefficient distribution in order to develop our
forensic technique. Let X be a random variable representing the
value of a DWT coefficient in a particular subband of an image.
For uncompressed images, we model the distribution of X using
the Laplace distribution [36]

fX(x) =
λ0

2
e−λ0|x|. (19)

Since traditional DWT-based image compression is equivalent
to nonuniform quantization [36], we then model the DWT co-
efficient distribution of an image that has undergone traditional
wavelet-based compression as

P[X = q] =

∫ q+△q

q−△q

λ0

2
e−λ0|x|dx, (20)

where q ∈ Z and △q is half of the width of the quantization
interval that maps DWT coefficients to q.

When examining compressively sensed images, we must
account for the noise introduced into the image’s DWT coeffi-
cients described in Section V-A. Since this noise will slightly
smooth out the impulsive spike that we would expect to occur
in the distribution of X at zero, we instead model the DWT
coefficients of a compressively sensed image using a Laplace
mixture distribution [37]

fX(x) = ω1
λ1

2
e−λ1|x| + ω2

λ2

2
e−λ2|x| (21)

where ω1 + ω2 = 1 and 0 < λ1 < 1 < λ2. Fig. 9
shows an example of a compressively sensed image’s DWT
coefficient histogram fit to both a Laplace and a Laplace mixture
distribution. We can see from this figure that an appropriately
chosen Laplace mixture distribution very accurately models the
compressively sensed image’s DWT coefficient distribution.
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Fig. 9. Fit the coefficient histogram of compressively sensed Lena with both
Laplace model and Laplace mixture model. Coefficients are taken from the third
subband after 6-level DWT decomposition with wavelet basis ‘bior4.4’.

C. Compressive Sensing Detection
Because the fingerprints left by traditional wavelet-based

compression techniques can be confused with the compressive
sensing fingerprints, we propose performing compressive sens-
ing detection on images in two steps [37]. In the first step, we
separate unaltered traditionally sensed images from those that
are either traditionally compressed or compressively sensed. In
the second step, we differentiate between compressively sensed
images and those that have traditionally undergone wavelet-
based compression.
Step 1 - Identify Uncompressed Traditionally Sensed Images

The goal of the first step of our compressive sensing detection
scheme is to remove uncompressed traditionally sensed images
from further examination. This step is equivalent to differenti-
ating between the following two hypotheses
H0: The image is uncompressed and traditionally sensed,
H1: The image is traditionally compressed

or compressively sensed.
(22)

where hypothesis H1 is a composite hypothesis. To accomplish
this, we exploit the fact that the DWT coefficient distributions of
both compressively sensed images and traditionally compressed
images will significantly differ from the Laplace distribution.

We begin by assuming that hypothesis H0 is correct. Under
this assumption, the parameter λ0 in (19) can be estimated for
a particular subband of an image’s DWT coefficients using the
maximum likelihood estimator

λ̂0 =
N∑N

i=1 |xi|
, (23)

where each xi represents a DWT coefficient in the subband
being examined and N is the number of DWT coefficients
in the subband. Once the estimate λ̂0 is obtained, we use λ̂0

and (19) to calculate the expected histogram gunaltk according
to (14). We then measure the mean squared distance (MSD)
between the observed histogram of DWT coefficients hk and
gunaltk according to the formula

MSD1 =
1

B

∑
k

(
hk − gunaltk

)2
, (24)

where B is the total number of histogram bins.
We note that this step is an application of our distribution-

based detection scheme proposed in section IV-B. MSD is
chosen instead of KL divergence to avoid the “divide by zero”
problem when calculating the KL divergence.

If the MSD between hk and gunaltk is sufficiently large, we
conclude that an image’s DWT coefficient histogram cannot be
modeled using (19), therefore the image either has undergone
wavelet-based compression or has been compressively sensed.
As a result, we differentiate between the hypotheses in (22)
using the decision rule
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δ1 =

{
H0 : If MSD1 < τ1
H1 : If MSD1 ≥ τ1,

(25)

where τ1 is the decision threshold. If δ1 returns a decision of
H1 for an image, then we proceed to step 2 of our detection
process.
Step 2 - Detect Compressive Sensing

Once we have decided that an image has been either tradition-
ally compressed or compressively sensed, we must differentiate
between these two possibilities. In the second step of our detec-
tor, we frame this problem as deciding between the hypotheses

H0:The image has undergone wavelet-based compression,
H1:The image was compressively sensed. (26)

We know that under hypothesis H1, an image’s DWT coefficient
distribution will be given by (21). As a result, we can identify
compressively sensed images by determining how well the
distribution of an image’s DWT coefficients within a subband
fits a Laplace mixture distribution.

To do this, we first estimate the parameters in the parameter
set θ = {ω1, ω2, λ1, λ2} using the expectation maximization
(EM) algorithm [38]. Let Zi be latent random variables that
denote which component of the Laplace mixture distribution
each DWT coefficient xi originates. As a result, we can write
the following equations:

fXi(xi|Zi = 1) =
λ1

2
e−λ1|xi|, (27)

fXi
(xi|Zi = 2) =

λ2

2
e−λ2|xi|, (28)

P[Zi = 1] = ω1 and P[Zi = 2] = ω2. (29)

At the tth iteration of the EM algorithm, the updated estimates
of the parameters in the parameter set are given by the equations

w
(t+1)
j =

1

n

N∑
i=1

T
(t)
j,i j = 1, 2 (30)

λ
(t+1)
j =

∑N
i=1 T

(t)
j,i∑N

i=1 T
(t)
j,i |xi|

j = 1, 2 (31)

where

T
(t)
j,i =

w
(t)
j λ

(t)
j e−λ

(t)
j |xi|

ω
(t)
1 λ

(t)
1 e−λ

(t)
1 |xi| + ω

(t)
2 λ

(t)
2 e−λ

(t)
2 |xi|

. (32)

The EM algorithm’s iterations are terminated after either the
maximized log-likelihood ratio

max
θ

Q(θ|θ(t)) (33)

=
N∑
i=1

2∑
j=1

T
(t)
j,i

[
ln
(
ω
(t+1)
j λ

(t+1)
j /2

)
− λ

(t+1)
j |xi|

]
.

converges or a fixed number of iterations have been reached.
After the values of ω1, ω2, λ1, and λ2 have been estimated,

we compute the expected DWT coefficient histogram gcsk under
hypothesis H1 using (14). Next, we calculate the MSD between
the gcsk and the observed histogram of DWT coefficients hk

MSD2 =
1

B

∑
k

(
hk − gcsk

)2
, (34)

where B is the total number of histogram bins. Finally, we
perform compressive sensing detection according to the decision
rule

δ2 =

{
H0 : If MSD2 > τ2
H1 : If MSD2 ≤ τ2,

(35)

where τ2 is a decision threshold.

VI. MEASUREMENT NUMBER ESTIMATION

Once a signal has been identified as compressively sensed, a
forensic investigator may wish to ascertain additional informa-
tion about how the signal was captured. One significant piece
of information is the number of compressive measurements that
were used to acquire the signal. In this section, we propose a
technique to estimate the number of compressive measurements
obtained when sensing a signal.

When a compressively sensed signal is reconstructed by
solving (3), the sparsest solution x such that Φ x = y is chosen.
Since the values of x can be thought of as weights for the
column vectors of Φ, and y is obtained also by weighted sum
of these vectors with non-sparse weighting values, it seems
natural that the sparsity of the reconstructed signal will be
closely related to dimension of the column vectors of Φ, which
is approximated to be the rank of Φ, i.e., the number of
compressive measurements. In fact, we are able to prove that the
relationship between the number of compressive measurements
and the number of zeros in the reconstructed signal is given by
the relationship stated below in Theorem 1.

Theorem 1: Let y be a vector of m compressive measure-
ments obtained by compressively sensing a signal that fits one
of the three signal models proposed in Section II-B. Assume that
the noise, if applicable, is continuously distributed. Additionally,
let the m by n sensing matrix Φ have orthonormal row vectors
selected uniformly at random from an orthonormal vector set
in Rn. If the reconstructed signal x is obtained by solving the
l1 minimization problem

min
x̃

||x̃||l1 s.t. Φx̃ = y, (36)

then with probability close to one, x will have m non-zero coef-
ficients. As a result, the number of compressive measurements
is given by

m = n− Λ0(x), (37)
where Λ0(x ) denotes the number of zero valued entries in x .

Proof: We prove this theorem by deriving a lower and
upper bound on n− Λ0(x ) respectively, then showing that the
only value of n− Λ0(x ) that satisfies both bounds is m.

To derive the lower bound, we begin by defining vector space
V as the linear span of the column vectors ϕ

1
, ϕ

2
, . . . , ϕ

n
of

the sensing matrix Φ. Since Φ has orthogonal row vectors, it
is full rank. Thus, dim(V ) = dim{ϕ

1
, ϕ

2
, . . . , ϕ

n
} = m. Next,

we define the dimension of an m length vector v on space V as
the size of the smallest subset of {ϕ

1
, ϕ

2
, . . . , ϕ

n
} whose linear

span contains v.
The compressive measurements y can be expressed as y =∑n
i=1 ϕi

si, where s is the signal being acquired by compressive
sensing. If s fits any of the signal models in Section II-B,
then the dimension of y is equal to the dimension of V with
probability close to one. Specifically, in the case of signals
corrupted by environmental noise and nearly sparse signals,
either the noise or the nature of the signal itself will cause
each entry of s nonzero. Otherwise, if the signal is corrupted
by measurement noise, then the independent white noise added
to the compressive measurements will cause y to lie in the span
of any subset of V of size m−1 or less with probability nearly
zero.

Because the reconstructed signal x is just another decompo-
sition of y on space V , the number of non-zero entries in x can
not be less than the dimension of y on this space. Thus,

n− Λ0(x ) ≥ dim(y) = dim(V ) = m. (38)

To derive the upper bound, we reformulate (36) as the
following equivalent problem [25]

min
z̃

1T z̃, s.t. Az̃ = y, z̃ ≥ 0. (39)
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(c)
Fig. 10. ROC curves of zero ratio detector and distribution-based detector on signals modeled as sparse signals in the presence of noise for (a) M/N=0.1, (b)
M/N=0.4 and (c) M/N=0.9. ‘Msure’ is short for measurement and ‘Envron’ is short for environment. ‘ZR’ denotes the zero ratio detector and ‘DB’ denotes the
distribution-based detector.

where 1 denotes a column vector of length 2n of all ones
and A = (Φ,−Φ) is of size m × 2n. If the solution to
(39) is partitioned into two vectors of equal length such that
z = (uT , vT )T , then the solution to (36) can be expressed as
x = u− v.

By examining this intermediate problem, the following
lemma and corollary can be proved by using Karush-Kuhn-
Tucker conditions [39].

Lemma 1: Let z′ denote the sparsest solution of problem
(39), i.e., the one with smallest number of non-zero coefficients.
Then

n− Λ0(z
′) ≤ m. (40)

Corollary 1: For any solution z of (39), the corresponding
solution x for (36) will have the same number of non-zero
coefficients with z.

Given these two results, we conclude our proof by recalling
that the solution to (36) is unique (see Theorem 1.1 in [8]), so
that the sparsest solution x′ to (36) is the only solution, i.e.,
x = x′. Therefore, n − Λ0(x ) = n − Λ0(z

′) ≤ m. Combining
this result with (38), we conclude that n − Λ0(x ) = m, thus
Theorem 1 is proved.

In practice, a number of iterative techniques are often used to
solve (36). Since these techniques are typically terminated after
the difference between two iterations is sufficiently small or a
fixed number of iterations has been reached, the solution yielded
by these techniques will often differ slightly from the optimal
solution. As a result, several values of x that would ideally
be zero will instead take small nonzero values. To compensate
for this effect, we instead count the number of entries Λζ(x)
that fall within a ball of radius ζ around zero. Our measurement
number estimator for the observed signal x is defined as follows:

m̂ = n− Λζ(x), (41)
where ζ = ||x̆||∞/ρ. If the signal x is modeled as a sparse signal
in noise, x̆ is taken as the noise component, otherwise x̆ = x.
The choice of ρ depends on how accurate the reconstruction
is. For example, in the ideal where the iteration in simulation
can go to infinity, then ρ → ∞ and ζ → 0. In our simulations,
we have experimentall observed that ρ = 100 yields desirable
performance.

VII. SIMULATIONS AND RESULTS

To verify the effectiveness of our proposed forensic tech-
niques, we have evaluated their performance through a series
of experiments. In this section, we present the results of these
experiments and show that our proposed techniques can reliably
detect the use of compressive sensing. We first evaluate the abil-
ity of our forensic techniques to identify compressive sensing
in sparse signals in the presence of noise, nearly sparse signals,
and nearly sparse signals in the presence of noise. We then
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Fig. 11. ROC curves of zero ratio detector and distribution-based detector
on signals modeled as sparse signals in the presence of noise when different
reconstruction algorithms were used.

evaluate the performance of our compressive sensing detection
technique for images and our technique to estimate the number
of compressive measurements used to acquire a signal.

A. Sparse Signals in the Presence of Noise
To evaluate the ability of both the zero ratio detector and

the distribution-based detector to identify compressive sensing
in sparse signals in the presence of noise, we first created
a database of testing signals. This database consisted of 200
compressively sensed sparse signals in the presence of envi-
ronmental noise, 200 compressively sensed sparse signals in
the presence of measurement noise, and 200 sparse signals in
the presence of additive noise which were not compressively
sensed. Each signal was created by first randomly generating
a sparse signal of length N = 1000 with 20 nonzero entries.
For each nonzero entry, its location was chosen uniformly at
random and its value was drawn from a Gaussian distribution
with a mean of 10 and unit variance. We then corrupted each
signal with additive Gaussian noise distributed N (0, 0.1). For
signals which were not compressively sensed, we added the
noise directly to the sparse signal to obtain the observed signal.
For compressively sensed signals corrupted by environmental
noise, we added the noise to the sparse signal, then performed
M compressive measurements. For signals corrupted by mea-
surement noise, we first obtained M compressive measurements
of the sparse signal, then added the Gaussian noise to each
compressive measurement. Each compressively sensed signal
was reconstructed using the basis pursuit de-noising algorithm
[25]. We obtain the noise component of the observed signal by
excluding the 20 entries that have the largest magnitudes, since
these likely correspond to the nonzero components of the sparse
signal. We then used both detection techniques to determine if
each signal was compressively sensed.

In our first set of experiments, we evaluated the performance
of both detection techniques as the ratio of the number of
compressive measurements to the total signal length was varied
from M/N = 0.1 to 0.9 in increments of 0.1. For distribution-
based detector, the modified KL divergence was chosen as the
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Fig. 12. ROC curves of distribution-based detection on nearly sparse signals and nearly sparse signals in the presence of noise for (a) M/N=0.1, (b) M/N=0.4
and (c) M/N=0.9. ‘Msure’ is short for measurement and ‘Envron’ is short for environment.

distance measure for it performs better than other distance
measures do. When performing these experiments, we varied
the decision thresholds of each detector over a range of values.
For each threshold value, we determined the associated proba-
bilities of detection Pd and false alarm Pf by calculating the
percentage of compressively sensed signals that were correctly
identified and the percentage of signals that were incorrectly
identified as compressively sensed respectively. We then used
these probabilities to construct a set of ROC curves showing the
performance of each detector. Selected ROC curves showing the
performance of both detectors for M/N = 0.1, 0.4, and 0.9 are
shown in Fig.s 10(a) through (c).

From the full set of ROC curves, we found that both detectors
achieved perfect detection, i.e. Pd = 100% with Pf = 0%, for
M/N ≤ 0.8. When M/N reaches 0.9, both detectors can still
identify compressive sensing with Pd = 99% at a Pf ≤ 5%.
Since in most real world scenarios compressive sensing will
be applied with M/N less than 0.5, these results show that
both techniques perform strongly under realistic conditions.
Furthermore, we can see from Fig. 10(c) that the distribution-
based detector outperforms the zero ratio detector because the
forensic investigator is able to make use of additional informa-
tion about the noise’s distribution. We also note that the perfor-
mance of our detectors decrease as M increases because with
more compressive measurements, the noise can be accurately
reconstructed. Since compressive sensing fingerprints manifest
themselves as changes in the noise distribution, this impedes
compressive sensing detection. Nevertheless, our results show
that compressive sensing detection can be performed with a high
degree of accuracy under realistic values of M/N .

Next, we evaluated the robustness of both detectors to
different signal and noise powers, as well as different noise
distributions. To evaluate the performance with different signal
and noise powers, we fixed the number of compressive measure-
ments so that M/N = 0.5. This was done because M/N = 0.5
is typically an upper bound in real world applications [9],
therefore it provides a lower bound on the performance of both
detectors in realistic scenarios. We then repeated the previous
experiments using the same noise power with signal powers of
10, 100, and 1000, and while using the same signal power with
noise powers of 0.1, 1, and 10. For each of these experiments,
both detectors achieved Pd = 100% at a false alarm rate of
Pf = 0%. These results show that both detectors can perform
strongly under a variety of signal and noise powers. Next, we
kept M/N = 0.5 and performed compressive sensing detection
when each signal corrupted by noise from the exponential,
Laplace, Gaussian, uniform and Rayleigh distributions. Again,
under each scenario both detectors were able to acheive Pd =
100% at a false alarm rate of Pf = 0%. Taken together with
our previous results, these results show that both our zero ratio
detector and distribution-based detector can be used to identify

compressive sensing in sparse signals corrupted by noise under
a wide range of conditions.

In addition, since several different algorithms are available
to reconstruct a compressively sensed signal, we performed a
set of experiments to demonstrate the robustness of our com-
pressive sensing detection technique to different reconstruction
algorithms. In these experiments, we used used both orthogonal
matching pursuit (OMP) [30] and the LASSO error variation
minimization reconstruction algorithm [31] to reconstruct the
compressively sensed signals. We then repeated our first set
experiments, this time setting M/N = 0.5. ROC curves
obtained from the results of these experiments are shown in Fig.
11. These results demonstrate that both of our detectors can
identify compressive sensing regardless of the reconstruction
algorithm.

B. Nearly Sparse Signals and Nearly Sparse Signals in the
Presence of Noise

For nearly sparse signals and nearly sparse signals in the
presence of noise, we evaluated our distribution-based detector’s
ability to identify compressive sensing. To do this we created a
testing database of 1000 signals consisting of 200 of each of the
following types of signals; compressively sensed nearly sparse
signals, nearly sparse signals which were not compressively
sensed, compressively sensed nearly sparse signals corrupted by
environmental noise, compressively sensed nearly sparse signals
corrupted by measurement noise, and nearly sparse signals
corrupted by additive noise which were not compressively
sensed.

Each signal was generated by first creating a nearly sparse
signal of length N = 1000 whose entries were drawn from
a Laplace distribution with variance 104. The Laplace dis-
tribution was chosen because it is commonly used to model
the coefficients of several nearly sparse signals [40], [41]. For
compressively sensed nearly sparse signals, we performed M
compressive measurements of the signal, then reconstructed it.
For compressively sensed nearly sparse signals in the presence
of noise, we applied zero mean additive Gaussian noise with
variance 10 to either the signal or the M compressive measure-
ments, then performed reconstruction using the basis pursuit de-
noising algorithm. To create nearly sparse signals in noise which
were not compressively sensed, we added zero mean Gaussian
noise with variance 10 to the nearly sparse signal. We then used
our distribution-based detector to determine if each signal had
been compressively sensed.

In our first set of experiments on these signals, we varied the
ratio of the number of compressive measurements to the signal
length from M/N = 0.1 to 0.9 in steps of 0.1 as was done in
Section VII-A. We evaluated our distribution-based detector’s
performance by varying its decision threshold over a range
of values, calculating the corresponding Pd and Pf for each
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Fig. 13. ROC curves of the first (left) and second (right) step detections on each DWT sub-band coefficients. M/N = 0.25 is used in compressive sensing.
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Fig. 14. ROC curves of the first (left) and second (right) step detections on coefficients of DWT sub-band 3 under different compression ratios of compressive
sensing.

threshold value, then creating a set of ROC curves. Selected
ROC curves for M/N = 0.1, 0.4, and 0.9 are shown in Fig. 12.

From the full set of ROC curves we found that when
M/N ≤ 0.8, our distribution-based detector could achieve a
probability of detection of Pd = 100% with Pf = 0% for both
nearly sparse signals and nearly sparse signals in the presence
of either type of noise. When M/N was increased to 0.9, our
detector was able to achieve a performance of Pd = 99% with
Pf ≤ 3% for all cases. These results show that our distribution-
based detector can accuratley identify compressively sensed
nearly sparse signals and nearly sparse signals in noise for
realistic values of M/N .

Next, we evaluated our distribution-based detector’s robust-
ness when performing compressive sensing detection on nearly
sparse signals and nearly sparse signals in noise. To do this, we
performed a series of experiments in which we fixed M/N at
0.5 as was done in Section VII-A, then varied the signal variance
as well as the noise power and distribution when appropriate.
For nearly sparse signals, we allowed the signal variance to
take values of 10−4, 1 and 104. In each case, the detector
achieved Pd = 100% with Pf = 0%, i.e. perfect detection.
For nearly sparse signals in the presence of noise, we repeated
experiments using signal powers of 103, 104 and 105 and with
noise powers of 0.1, 1 and 10. Additionally, we performed
experiments in which we fixed the signal power at 10 and
varied the noise distribution between the Gaussian, Rayleigh,
Laplace, exponential and uniform distributions. In each of these
experiments, our detector was able to achieve Pd = 100% with
Pf = 0%. These results show that our detector can be used
to reliably identfy compressive sensing in both nearly sparse
signals and nearly sparse signals in the presence of noise under
a wide variety of conditions.

C. Images
To evaluate the performance of our compressive sensing de-

tection technique for images, we first created a testing database
of images. For each experiment, we used 300 unaltered images,
300 JPEG 2000 compressed images, and 300 compressively
sensed images from the UCID database [35]. Each image in this
database has size of 512 × 256 pixels. During JPEG 2000 com-
pression and compressive sensing reconstruction, the ‘bior4.4’

DWT basis was used to perform the discrete wavelet transform
of each image. To fairly evaluate our detector, during each set of
experiments the compression quality factor for the JPEG 2000
images and the number of compressive measurements for the
compressively sensed images were chosen so that both sets of
images had the same average PSNR. For example, the average
PSNRs for M/N = 0.67 and M/N = 0.25 are 36dB and 26dB,
respectively.

In our first experiment, when performing compressive sensing
we chose the compression ratio to be N/M = 4. After creating
an appropriately compressed set of JPEG 2000 images, we
classified each image in the testing database using our two-step
image compressive sensing detection technique. When doing
this, we obtained classification results using DWT subbands 2
through 6 for both detection steps. We used these results to
create the set of ROC curves for each step of our detection
scheme shown in Fig. 13.

The leftmost plot in Fig. 13 shows ROC curves for the first
step of our detection process in which unaltered images are
separated from both JPEG 2000 compressed and compressively
sensed images. From these results, we can see that performing
detection on subbands 3, 4, or 5 yields the best performance.
For each of these subbands, our detector achieves a Pd of
100% at a Pf of 4% or less. The rightmost plot in Fig. 13
shows ROC curves for the second step of our detector. From
these curves we can see that when using subbands 2 or 3 to
perform detection, our detector achieves a Pd of approximately
90% at Pf = 10%. Taken together, these results show that
the detection scheme proposed in Section V-C can be used to
reliably discriminate between unaltered, compressively sensed,
and JPEG 2000 compressed images. For both steps of the de-
tection process, we note that the performance decreases sharply
when subband 6 or higher is used to perform detection. This
is because the kurtosis of the distribution of DWT coefficients
typically increases as the subband increases. This, together with
the fact that the effective quantization interval used in JPEG
2000 is typically larger for higher DWT subbands, will result
in the DWT coefficient distributions of unaltered, compressively
sensed, and JPEG 2000 compressed images appearing very
similar.
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Fig. 15. Estimated M̂ versus the real M for (a) sparse signals in the presence of noise, (b) nearly sparse signals, (c) nearly sparse signals in the presence of
noise.

Next, we repeated the previous experiment while varying
the number of compressive measurements so that the compres-
sion ratio of the compressively sensed images ranged between
N/M = 1.5 and 4. In this set of experiments, we used subband
3 to perform both steps of our detection process. We used the
results of this set of experiments to create the ROC curves
shown in Fig. 14. We can see from the leftmost plot in Fig.
14 that the first step of our detector can achieve Pd > 90%
with Pf < 5% when N/M ≥ 2. Since in most realistic
scenarios N/M > 2, these ROC curves show that the first step
of our detector performs strongly. The rightmost plot in Fig. 14
shows that the second step of our detector can acheive a Pd

of approximately 90% or higher at Pf = 10% for each value
of N/M . These results show that our dector can be used to
reliably discriminate between unaltered, compressively sensed,
and JPEG 2000 compressed images in a variety of scenarios.

D. Estimator of the Number of Compressive Measurements
We performed a final set of experiments to evaluate the

performance of our technique to estimate the number of com-
pressive measurements used to capture a signal. In these exper-
iments, we created a set of sparse and nearly sparse signals of
length N = 1000 as was done in Sections VII-B and VII-A,
then corrupted them using both environmental and measurement
noise to create a database of 100 of each of the following
signals; sparse signals in the presence of environmental noise,
sparse signals in the presence of measurement noise, nearly
sparse signals, nearly sparse signals in the presence of envi-
ronmental noise, and nearly sparse signals in the presence of
measurement noise. When creating signals corrupted by noise,
we used Gaussian noise whose variance corresponded to a
signal to noise ratio (SNR) of 103. This was done because the
performance of our forensic technique decreases as the SNR
decreases, thus our results can be interpreted as a conservative
evaluation of our estimator’s performance.

Once we created our testing database, we compressively
sensed each signal while varying the number of compressive
measurements from M = 100 to 900. We then used our
forensic technique to obtain an estimate M̂ of the number of
compressive measurements used to acquire each signal. The
results of this experiment are displayed in Fig. 15 which shows a
series of plots comparing the estimated number of compressive
measurements to the true number. We can see from this figure
that for each signal model, our estimate closely matched the
true number of measurements. Furthermore, we can see that
our estimate lies within ±25 measurements of the true number
of measurements.

Additionally, we also testified the effectiveness of our pro-
posed estimator of the number of compressive measurements
on images. In these experiments, we tested our estimator on
the database of compressively sensed images created in section
VII-C. We have found that higher frequency subbands tend to

TABLE I
RELATIVE ERROR OF ESTIMATING COMPRESSIVE MEASUREMENTS FOR

IMAGES.

True M/N 0.25 0.4 0.5
Relative Error 3.2% 3.5% 5.2%

have higher estimation accuracies due to their sufficient num-
bers of coefficients. Thus, we used subband 6 to estimate the
number of compressive measurements in this subband, and then
obtain the estimated ratio of M/N . The relative square error of

the estimated M/N ratio was calculated as E
[( M̂

N −M
N

)2

(M
N )2

]
. Table

I lists these relative estimation errors for some typical choices
of M/N ratios. The results show that the relative square error
of our estimator on images is no greater than 5.2% for typical
choices of compression ratios in compressive sensing.

VIII. CONCLUSION

In this paper, we have proposed a set of techniques to
identify the use of compressive sensing in a wide variety of
signals. To do this, we first identified the fingerprints left in a
compressively sensed signal. We then developed two general
techniques to identify compressively sensed signals; one that
operates by analyzing the ratio of zero valued entries in a signal,
and another that operates by identifying changes to a signal’s
coefficient distribution caused by compressive sensing. Since
evidence of compressive sensing in images can be confused
with fingerprints left by JPEG 2000 compression, we designed
a compressive sensing detection technique specifically tailored
to digital images. Additionally, we proposed a technique to
estimate the number of compressive measurements used to
acquire a compressively sensed signal.

Our experimental results have shown that both our zero
ratio and distribution-based detection schemes are able to re-
liably detect compressive sensing in a wide variety of realistic
scenarios. Similarly, we hanve shown that our technique to
identify compressive sensing in images can reliably distinguish
compressively sensed images from both uncompressed and
JPEG 2000 compressed images. Additionally, we have provided
both a theoretical proof and experimental results verifying
the effectiveness of our technique to estimate the number of
compressive measurements used to acquire a signal.
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