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EEG signal comprises of information related to neurological activities of 

the brain [1].
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Introduction
• Electroence phalogram (EEG)

• EEG subsets :  A, B, C, D, and E

Figure: Represents EEG recoding of subset A, B, C, D, and E

BIO-L.4.3 Bio-Signal Processing & Machine Learning for MCPS

Paper #1479



GlobalSIP-2018 

EEG Data for Epileptic Seizure Detection

EEG

subsets

Frequency 

Characteristic

Patient Type

A 173.61 Hz Healthy

B 173.61 Hz Healthy

C 173.61 Hz Non-healthy

D 173.61Hz Non-healthy

E 173.61Hz Non-healthy

A: Surface EEG recorded with eyes open.

B: Surface EEG recorded with closed

C: Intracranial recording in seizure-free interval

interval of epileptogenic zone

D: Intracranial recording in seizure-free

E: Recorded during ictal period

Ref: http://epileptologiebonn.de/cms/front_content.php?idcat=193&lang=3&changelang=3

Figure: Represents Normal & Seizure EEG recoding 
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EEG Signal Analysis
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Importance of  EEG Signal Reason of Analysis

 Diagnostic value in monitoring seizure 

activity.

 Alteration in signal activity indicates active 

epilepsy

 Tool to assist doctors in diagnosing active 

epilepsy patients.

Improved quality care for patients.

Motivation, Problems and Goals

Motivation
According to WHO, 3.4 million epilepsy patients are registered worldwide with high mortality rate. 

Shortage of  medical professionals, Poor access to diagnostic services and  absence of supply chain 

management [2].

Problems
Interpretation of the neurological activity are subjective. Highly non-stationary complex EEG signal

is very difficult to analysis. Additionally, time of seizure can vary which creates more challenge from

diagnosis perspective [3-4].

A novel geometry rich non-stationarity visualization tool for generic time series analysis. EEG signal

representation in 2-D space assists in better understanding of seizure activityGoals
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Proposed Method for StationPlot

Fig. Pipeline for proposed StationPlot based seizure detection..

Preprocessing: 

 Trend-stationary (TS) & Difference stationary (DS) [5].

 Mathematically, Box-Jenkins non-stationary time series analysis for TS & DS.

Feature Extraction & ML Classification

Feature is extracted from the preprocessed signal via StationPlot & different

convex hull geometry (CHG) parameters.

 The extracted features are fed to SVM-RBF for healthy & seizure classification.
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2-D StationPlot 

The trend present in the given time series,

𝑥𝑡 is de-trended by subtracting the mean

value or linear trend of the feature vector

& a least-squares fit of the time series is

envisaged.

In the Euclidean space, we define the 2-D

StationPlot & its subsequent feature

extraction thereof.

For, the 2D-planar case, 𝑛𝑡ℎ order

StationPlot is defined as the plot of 𝑋1𝑛

versus 𝑋2𝑛, where, where,

𝑋1 𝑛 = ∆
𝑛𝑋 𝑡 & 𝑋2 𝑛 = ∆

𝑛+1 𝑋(𝑡)

Fig. Representative 2-D StationPlot of (a) Healthy 

(in green) & (b) Seizure (in blue) EEG signals.

Continued…
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3-D StationPlot

In the Euclidean space, we define the 3-

D StationPlot & its subsequent feature

extraction thereof.

For 3D 𝑛𝑡ℎ order StationPlot is defined

as the surface generated by plotting 𝑋1 𝑛 ,

𝑋2(𝑛) & 𝑋3(𝑛) along the 𝑋1, 𝑋2 and z-

axis 𝑅3.

𝑋1 𝑛 = ∆
𝑛𝑋 𝑡 , 𝑋2 𝑛 = ∆

𝑛+1 𝑋 𝑡 &

𝑋3 𝑛 = ∆
𝑛+2 𝑋 𝑡 &,

∆𝑛𝑋 𝑡 = ∆ 𝑛+1 𝑋 𝑡 − ∆𝑛−1𝑋(𝑡 − 1)

Fig. Representative (a) Healthy EEG signal (in green), 

(b) 3-D StationPlot of (a), (c) Seizure EEG signal (in 

blue), (d) 3-D StationPlot of (c)

Continued…
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Convex Hull Geometry on StationPlot

 The convex combination of 𝑘 number of data-points in X, i.e., 𝑥1, 𝑥2,…, 𝑥3, & with k

number of constraints 𝜃1, … , 𝜃2, … 𝜃𝑘 ≥ 𝜃1 + 𝜃2 +⋯+ 𝜃𝑘 = 1 is defined as [6]:

𝑥 = 𝜃1𝑥1 + 𝜃2𝑥2 + 𝜃𝑘𝑥𝑘

 CH spans the set of all possible convex combinations of data-points in X by taking all the

permutation of the coefficients, 𝜃𝑘. In the closed form, the convex hull can be expressed as:

𝑐𝑜𝑛𝑣 =  

𝑖=1

𝑠

𝜃𝑖𝑥𝑖| ∀𝑖: 𝜃𝑖 ≥ 0 ∩ 

𝑖=1

𝑠

𝜃𝑖 = 1

 Quickhull algorithm has been used to compute the CHG [7].
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Convex Hull Geometry on StationPlot Continued…

Convex hull area / volume (CHA/V)

 CHA/V quantifies the polygon area/volume formed by the CH triangulation of the boundary

of the CH & signifies the total spread of the ROI on the StationPlot. For 𝑥𝑖, 𝑦𝑖 lying on the

convex hull in 𝑅2. CH given as [7]:

𝐶𝐻𝐴 =
1

2

𝑥1 𝑥2
𝑦1 𝑦2

+
𝑥2 𝑥3
𝑦2 𝑦3

+⋯+
𝑥𝑛 𝑥1
𝑦𝑛 𝑦1

Convex Hull Perimeter (CHP)

 CHP is CH circumference boundary or the aggregate path length of all data point's in the

convex combination. It is computed by addition of all the adjoining vertices taken

sequentially of the convex hull [7]

𝐶𝐻𝑃 = 

𝑖=1

𝑛

= 𝑥𝑖 − 𝑥𝑖+1
2 − 𝑦𝑖 − 𝑦𝑖+1

2
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Convex Hull Geometry on StationPlot Continued…

Circularity (C)

 2D-StationPlot's ROI exhibits asymmetric geometry, which is apprehended by C measuring

the degree of roundness of the convex hull & its deviation from its circular nature [6].

𝐶 =
4 ∗ 𝐶𝐻𝐴 ∗ 𝜋

𝐶𝐻2

Aspect ratio

 The aspect ratio measures the ratio of ROI’s main inertia axis length, 𝐼𝑚𝑎𝑖𝑛 to ROI’s minor

inertia axis length, 𝐼𝑚𝑖𝑛𝑜𝑟 [7].

𝐴𝑠𝑝𝑒𝑐𝑡 𝑟𝑎𝑡𝑖𝑜 =
𝐼𝑚𝑎𝑖𝑛
𝐼𝑚𝑖𝑟𝑜𝑟
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 Kruskal-Wallis based ANOVA (Analysis of Variance) test is used for p-value analysis [8].

Features P-Values

A vs E ABCD vs E

Convex hull geometry 

(CHG) 

6.75 × 10-16 4.68 × 10-14

Convex full perimeter 

(CHP)

8.18 × 10-15 3.19 × 10-12

Circularity 6.11 × 10-12 4.02 × 10-10

Aspect ratio (AR) 4.04 × 10-7 1.05 ×10-6

Fig. represents Box-Plot of the extracted

CHG features: (a)-(d) for (E vs ABCD)

problem & (a)-(d) for (E vs A) problem.

H=Healthy & S=Seizure

Experimental Results & Discussion

Table I: P-values of the extracted features from each modes.

 With p-values ≤ 0.01 for the attributes

demonstrate the adequacy of the CHG features

 Features are fed to SVM-RBF for

classification.
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Continued…Experimental Results & Discussion

 Each of these feature vectors are randomized to eschew the bias of the training parameters &

prevent over-fitting. 70% samples are selected for training & the rest 30% is used for testing.

 Standard evolution metrics was utilized for performance evaluation.

𝑆𝑁 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
,

𝑆𝑃 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

𝐴𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Where, TP = true positive, TN = true negative, FP = false positive & FN = false negative 

respectively.

Performance Evaluation
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Continued…Experimental Results & Discussion

Performance Analysis
Kernel Function

(Parameters)
Statistical
Parameter

Online Data
(Mean± Std.)

Recorded Data
(Mean± Std.)

Linear AC 99.31 ± 1.12 98.70± 1.68

SN 99.67± 1.05 98.74 ± 2.10

SP 97.91 ± 1.79 96.13 ± 4.12

Quadratic AC 99.16 ± 1.16 97.66 ± 4.57

SN 99.46 ± 1.23 98.37 ± 2.19

SP 96.92 ± 2.01 95.71 ± 6.12

Polynomial
(Order = 3)

AC 98.85 ± 1.69 97.46 ± 1.71

SN 98.96 ± 2.58 98.15 ± 2.24

SP 97.16± 2.67 98.57 ± 2.13

RBF
(𝜎 = 2)

AC 99.63 ± 1.60 98.79 ± 1.66

SN 100 ± 100 98.18 ± 1.81

SP 97.35 ± 3.15 93.10 ± 5.48

Table II. Performance Analysis of the Propose Method on the 2-Class 

problem.

 It can be found that RBF kernel

performs significantly better as

compared to the other kernels

 An overall classification accuracy of

99.31% for (A vs E) & 98.79% for

(ABCD vs E) 2-class problem.

 StationPlot is superior than intensive

computational deep learning methods

like CNN & RNN.
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Seizure detection results of the proposed & state-of-art methods for two-class 

problem (A vs E), N.A.: Not available.
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Seizure detection results of the proposed & state-of-art methods for two-class 

problem (ABCD vs E), N.A.: Not available.
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 A non-stationarity quantification tool, a.k.a., StationPlot for early stage epilepsy detection

using EEG signals is presented.

 StationPlot can also be used for effective chaos modeling for any non-stationary time series,

its visualization & analysis of temporal evolutionary behavior for quantification thereof.

 The 𝐷𝑡ℎ order differencing statistics exhibits significant knowledge about the underlying

system & adequately captures the underlying non-stationarity structure analytics, which is

otherwise inaccessible.

 We are escalating our method for noise robustness via inclusion of area moments to study

the distribution of non-stationary points.

Conclusion and Future Work
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