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Introduction
EEG signal comprises of information related to neurological activities of

* Electroence phalogram (EEG)

the brain [1].
« EEG subsets: A, B,C,D,and E
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Figure: Represents EEG recoding of subset A, B, C, D, and E
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EEG Data for Epileptic Seizure Detection

Frequency Patient Type
Characteristic

A 173.61 Hz Healthy

B 173.61 Hz Healthy

C 173.61 Hz Non-healthy
173.61Hz Non-healthy

E 173.61Hz Non-healthy

A: Surface EEG recorded with eyes open.

B: Surface EEG recorded with closed

C: Intracranial recording in seizure-free interval
interval of epileptogenic zone

D: Intracranial recording in seizure-free

E: Recorded during ictal period
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Figure: Represents Normal & Seizure EEG recoding

Ref: http://epileptologiebonn.de/cms/front_content.php?idcat=193&lang=3&changelang=3
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Importance of EEG Signal

EEG Signal Analysis

Reason of Analysis

> Diagnostic value in monitoring seizure

activity.

> Alteration in signal activity indicates active

epilepsy

> Tool to assist doctors in diagnosing active
epilepsy patients.
» Improved quality care for patients.

Motivation, Problems and Goals

Motivation

According to WHO, 3.4 million epilepsy patients are registered worldwide with high mortality rate.
Shortage of medical professionals, Poor access to diagnostic services and absence of supply chain
management [2].

Problems

Interpretation of the neurological activity are subjective. Highly non-stationary complex EEG signal
is very difficult to analysis. Additionally, time of seizure can vary which creates more challenge from
diagnosis perspective [3-4].

Goals

A novel geometry rich non-stationarity visualization tool for generic time series analysis. EEG signal
representation in 2-D space assists in better understanding of seizure activity
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Proposed Method for StationPlot
E;J,,'{;,,'B:a'i,,' 'EEG signal -> Pre-processing  StationPlot & Convex Hull Geometry ~ SVM |
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Fig. Pipeline for proposed StationPlot based seizure detection..

Preprocessing:

» Trend-stationary (TS) & Difference stationary (DS) [5].

» Mathematically, Box-Jenkins non-stationary time series analysis for TS & DS.

Feature Extraction & ML Classification

»Feature is extracted from the preprocessed signal via StationPlot & different

convex hull geometry (CHG) parameters.

» The extracted features are fed to SVM-RBF for healthy & seizure classification.

>
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2-D StationPlot

»The trend present in the given time series,
x; 1S de-trended by subtracting the mean
value or linear trend of the feature vector %
& a least-squares fit of the time series is
envisaged.
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> In the Euclidean space, we define the 2-D
StationPlot & its subsequent feature
extraction thereof.
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>For, the 2D-planar case, n'" order
StationPlot is defined as the plot of X;n 0 ———" 1000

-100 -50 0 50 100 -1000  -500 0 500 1000

versus X,n, where, where, (a) (b)

Fig. Representative 2-D StationPlot of (a) Healthy
X:(n) = A"X(t) & X,(n) = A("“)X(t) (in green) & (b) Seizure (in blue) EEG signals.
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3-D StationPlot

(a)

> In the Euclidean space, we define the 3- i
D StationPlot & its subsequent feature g 9
extraction thereof. g 3
>For 3D nt" order StationPlot is defined res w e
] (n+1) n DS 100
as the surface generated by plotting X, (n), © K e a "o

X,(n) & X3(n) along the X;, X, and z-
axis R3.

§ |
X1(n) = A"X (), X,(n) = A VX (1) &
X3 (n) — A(n+2)X(t) &, 1000 ; . 1000
AMX () = ADX () — AMTIX(E - 1) Sy D8 DSy "™ ™ DS,

Fig. Representative (a) Healthy EEG signal (in green),
(b) 3-D StationPlot of (a), (c) Seizure EEG signal (in
blue), (d) 3-D StationPlot of (c)
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Convex Hull Geometry on StationPlot

» The convex combination of k number of data-points in X, i.e., xq, x5,..., X3, & with k
number of constraints 6y, ..., 05, ...0, = 6, + 6, + .-+ 0;, = 1 is defined as [6]:

X =01x1 +0,x, + 0rxp

» CH spans the set of all possible convex combinations of data-points in X by taking all the
permutation of the coefficients, 6,. In the closed form, the convex hull can be expressed as:

|s| |s|

conv = zeixi|(‘v’i:9i > 0) nZ@i =1
i=1 i=1

» Quickhull algorithm has been used to compute the CHG [7].
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Convex Hull Geometry on StationPlot Continued...

Convex hull area / volume (CHA/V)

» CHA/V quantifies the polygon area/volume formed by the CH triangulation of the boundary
of the CH & signifies the total spread of the ROI on the StationPlot. For x;, y; lying on the
convex hull in R?. CH given as [7]:

1 ( X1 x2| |x2

CHA =7 yi Y2 Y2

; M)

;2| o |yn V1

Convex Hull Perimeter (CHP)

» CHP is CH circumference boundary or the aggregate path length of all data point's in the
convex combination. It is computed by addition of all the adjoining vertices taken
sequentially of the convex hull [7]

n

CHP = z = (\/(xl —x11)% — (i — J’i+1)2)
i=1
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Convex Hull Geometry on StationPlot Continued...

Circularity (C)

» 2D-StationPlot's ROI exhibits asymmetric geometry, which is apprehended by C measuring
the degree of roundness of the convex hull & its deviation from its circular nature [6].

o 4 x (CHA) 1
- CH?

Aspect ratio

» The aspect ratio measures the ratio of ROI’s main inertia axis length, I,,,;;;, to ROI’s minor
inertia axis length, Lm0 [7]-

Imain

Aspect ratio =
Imiror
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Experimental Results & Discussion
O Kruskal-Wallis based ANOVA (Analysis of Variance) test is used for p-value analysis [8].

X ¢ 000 |
10 g T | 1000{ ()
Convex hull geometry 6.75 x 1016 468 x 1014 ToB ] 6 T = 8 =
(CHG) S Dot = gt =
CHA(H) CHA(S)  CHP(H) CHP(S) ARH) AR(S) CH CS)
Convex full perimeter 8.18 x 101>  3.19 x 1012 (a) (b) (c) (d)
(CHP) . 9 7 3000 2000
14 ; 8 | ; _
Circularity 6.11 x 102 4.02 x 1010 LIRS I S S I B A L 000l =
100 L =i , i 3 | A | ‘
Aspect ratio (AR) 4.04 x 107 1.05 x10 y 0 g 7 |10 [ -
| | L % - =
= = 0 || =
Table I: P-values of the extracted features from each modes. CHA(H) CHA(S)  CHP(H) CHP(S) AR(H) AR(S) CH) C(§

(e) (f) (9) (h)
Fig. represents Box-Plot of the extracted
CHG features: (a)-(d) for (E vs ABCD)

> Features are fed to SVM-RBF for problem & (a)-(d) for (E vs A) problem.
classification. H=Healthy & S=Seizure

» With p-values < 0.01 for the attributes

demonstrate the adequacy of the CHG features
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Experimental Results & Discussion  Continued..

Performance Evaluation

» Each of these feature vectors are randomized to eschew the bias of the training parameters &
prevent over-fitting. 70% samples are selected for training & the rest 30% is used for testing.
» Standard evolution metrics was utilized for performance evaluation.

o TP
TP+ FN’

o TN
TN + FP
TP + TN

AC = T T TN T FP T FN

Where, TP = true positive, TN = true negative, FP = false positive & FN = false negative
respectively.
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Experimental Results & Discussion

Kernel Function | Statistical | Online Data Recorded Data
TR e > It can be found that RBF kernel

Performance Analysis
Linear 99.31 +1.12
SN 99.67+ 1.05
SP 97.91 + 1.79
Quadratic AC 99.16 + 1.16
SN 99.46 + 1.23
SP 96.92 + 2.01
Polynomial AC 98.85 + 1.69
[z =2 SN 98.96 + 2.58
SP 97.16+ 2.67
RBF AC 99.63 + 1.60
(0=2) SN 100 + 100
SP 97.35 + 3.15

Table Il. Performance Analysis of the Propose Method on the 2-Class

problem.

98.70 + 1.68
98.74 + 2.10
96.13 + 4.12
97.66 *+ 4.57
98.37 £ 2.19
95.71 + 6.12
9746 £ 1.71
98.15+2.24
98.57 + 2.13
98.79 + 1.66
98.18 + 1.81
93.10 +5.48

performs  significantly  better

compared to the other kernels

as

» An overall classification accuracy of
99.31% for (A vs E) & 98.79% for
(ABCD vs E) 2-class problem.

» StationPlot is superior than intensive
computational deep learning methods
like CNN & RNN.
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Seizure detection results of the proposed & state-of-art methods for two-class

problem (A vs E), N.A.: Not available.

" Ref,.YoP Methodology + Classifier Performance(%)
AC SN SP
Discrete wavelet transform
[6] (2012) (DWT), normalized coefficient of| 91.8 | 83.6 | 100
variation (NCOV), LDA.
[11] (2012) Permutation Entropy (PE) 938 | 943 | 932
SVM.
Lacunarity & Bayesian linear
[21] (2013) discriminant analysis (BLDA) 96.6 | 96.2 | 96.7
Discrete wavelet transform
[7] (2014) (DWT), fractal dimension (FD), 97.5 | 98.0 | 96.0
SVM.
Weighted-permutation entropy
[22] (2016) (WPE). SVM. 97.2 1 945 | 100
Multi-level Wavelet
[10] (2016) Decomposition, ELM. N.A.| 994 | 77.1
| This work | StationPlot, SVM 99.6 | 100 | 97.9
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Seizure detection results of the proposed & state-of-art methods for two-class
problem (ABCD vs E), N.A.: Not available.

Ref,.YoP Methodology + Classifier Performance(%)
AC SN SP

Empirical Mode Decomposition-
[3] (2013) Modified Peak Selection 98.2 | N.A.| N.A.
(EMD-MPS), KNN

(4] (2015) | Hilbert marginal spectrum

(HMS), SVM 98.8 | N.A.| N.A.

Local Neighbor Descriptive

Pattern (LNDP), One-dimensional
Local Gradient Pattern (1D-LGP),
ANN

| This work | StationPlot, SVM 98.8 | 98.7 | 98.6

[16] (2017) 98.7 | 98.3 | 98.8
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Conclusion and Future Work

» A non-stationarity quantification tool, a.k.a., StationPlot for early stage epilepsy detection
using EEG signals is presented.

» StationPlot can also be used for effective chaos modeling for any non-stationary time series,
its visualization & analysis of temporal evolutionary behavior for quantification thereof.

> The D' order differencing statistics exhibits significant knowledge about the underlying
system & adequately captures the underlying non-stationarity structure analytics, which is
otherwise inaccessible.

» We are escalating our method for noise robustness via inclusion of area moments to study
the distribution of non-stationary points.
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