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‘ Channel gain cartography

Estimated CG map

( Channel gain (CG) cartography 2

" Global view of any-to-any CGs

15
" |pstrumental in

» cognitive radio (CR)

[f] y-coordinate

» interference management

5 . 10 15 200 [dB]
x-coordinate Ift]

] Idea

= Spatially close radio links exhibit similar shadowing [Agrawal-Patwari’09]

= Interpolation of CG measurements between Tx-Rx pairs

P. Agrawal and N. Patwari, “Correlated link shadow fading in multihop wireless
networks,” IEEE Trans. Wireless Commun., vol. 8, no. 9, pp. 4024-4036, Aug. 2009.



‘ Contributions In context

] Related work
= RF tomography using the spatial loss field (SLF) model [Patwari-Wilson’08]

" Tracking spatio-temporal dynamics of CG via KKF [Kim et al’l1]
* Experimental validation of RF tomography models [Hamilton et al’12]

* CG cartography via low-rank and sparsity on SLF [Lee-Kim’14]

O Limitation

» Existing approaches postulate ad-hoc propagation models

] Desiderata

Joint estimation of CG map and propagation model

1 Contributions
= Blind estimator for CG map and propagation function

= Efficient batch algorithm for large datasets




‘Any-to-any channel gain estimation

 Sensors located at x,, and x,, over 2-D geographical area 4

1 Channel gain (in dB) over the link x,,—x,,/

G(Xpn,Xp ) = Gy —v101logyg ||xn — X/ || — $(xp, Xp7) (1)

N x

[Gain at unit distance] [Path-loss exponent ] [Shadowing ]

" HXW, — Xy ‘ |: diStance between Xn and Xn_f

1 Goal: Interpolation of channel gain G(x, x’) for an arbitrary link x—x’
(as) {Go,~} known

= Shadowing model allows interpolation of §(x, x’)

» Substitution of 5(x,x’) into (1) yields G(x,x’)




‘ Shadowing model

1 RF tomography model [Agrawal-Patwari’09]

s(x,x') = /,4 w(x, x', X) Z ), pa(x, X', %)) f(X:)

= Spatial loss field (SLF) f : A — R
=  Weight function w weighs f(x) more heavily at x lying closer to xx’

= w functions in literature expressible in terms of

{ P1(x,x") = [|x — x'||2
P2(x,x', %) = ||x — x||2 + [|x = x|




‘ Blind CG cartography

 Existing works select w heuristically

1 Proposed work: joint estimation of fand w

= Heuristic selection of w not required

= Estimation of w via kernel regression

1 Problem statement

= Given:measurements {3;}/_; and sensor locations {(X,(1): Xpn'(1)) }1—1

= Estimate {f(j?;i)}j_\rql and w




‘ Problem formulation

1 Reproducing kernel Hilbert space
= {w(gb) =) air(d,¢i): o ER; . p; € Ri} Q¢ = o1, ¢2]”
1=1

» Reproducing kernel x: R? x R? — R e.g., Gaussian radial basis function

1 Regularized formulation

2
(P1) min Z(efzqum %))+ sallwlBe + s £13

weH,
fERE\T‘ t=1

oC o0
= Smoothness on w promoted by ||w|[7, = Z Z ;i K (QDi, Pir)

1=114=1

1 Challenge: 7{ is of possibly infinite dimension




‘ Finite-dimensional reformulation

(] Representer theorem [Scholkopf and Smola 02’]

T Ny
w(p) = Z Z arik(P, P i)

t=1 =1

" Together w/ so-called reproducing property, implies

T Ny
lo]|5, = Z Z ap i irki(Pri, i) = ' Kex

bt =10 —1
3 (P1) becomes
A
(P2) min f\ $— (Ir @ fHKal; + pwe” Koo+ g £l

B. Schoélkopf and A. J. Smola, “Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond”, MIT Press, 2002.



‘ Batch algorithm

1 Alternating minimization (AM) approach

Set Mw, If, k,and initialize f]0] at random
for k=0,1...

Set Axl[k] =" (e; @ o [K]KT)
[S2] f[k+ 1] = (AL[K|AK[K] + psTIy,) " AL[k]S

[S11 afk+1] = K7 (Ir © fIk]£7 [K)K + 1, TK] K7 (I  f[k))3

1 Complexity can be reduced by clustering {¢;;}: .

10




‘ Synthetic dataset

 Simulation setting
* 80 sensors uniformly deployed over A = [0.5, 15.5] x [0.5, 15.5]
* Dataset (T = 3, 160) generated with inverse area model [Hamilton et al’ 14]

07 1f¢2>(f)1+%

w(Pr, P2) = {min(Q(qﬁlgqﬁ):Q((f)l’qbl +9)) otherwise

where Q(¢y, ¢o) :=4/mpor/ b3 — d7, A= 3.5,and 6 = 0.5

» Corrupted by white Gaussian noise w/ ¢ = 1073

* N, = 1,500 with random sampling

* Gaussian kernel with o, = 0.15 adopted

A2
k(¢ ¢') = exp ( I6 -4 |z)

2
207

= up=10"" and p, = 0.2

B. R. Hamilton, X. Ma, R. J. Baxley, and S. M. Matechik, “Propagation modeling for radio frequency
tomography in wireless networks,” IEEE J. Sel. Topics Sig. Proc., vol. 8, no. 1, pp. 55-65, Feb. 2014. 11



‘ Numerical results

True SLF
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J Accurate reconstruction of the SLF

4 o fits well on smooth parts of w
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‘ Conclusions and future work

1 Blind CG map estimation via nonparmetric kernel regression

1 Heuristics not required to select w

 Clustering algorithms incorporated to reduce complexity

1 Future work

» Leverage prior information on f

m  Real data tests

AT
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