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Clustering

* Clustering is one of the most important tasks in machine learning
[Jain’PRL10]: e.g., displaying news and search engines.

e Goal: grouping similar objects in the same cluster
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Clustering results



Constrained Clustering
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Constrained Clustering

Instance-level constraints

Clustering with pair-wise constraints
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Constrained Clustering

Instance-level constraints

Clustering with pair-wise constraints

_________________________________________________________

cluster 2

Must-link constraint
————— Cannot link constraint

*  Well covered in literature [Basu’SDMO04, Bilenko’ICMLO4,
Wagstaff’ ICML01]



Constrained Clustering

Instance-level constraints

Clustering with pair-wise constraints

cluster 2 !

Must-link constraint
————— Cannot link constraint

Well covered in literature [Basu’SDMO04, Bilenko’ICMLO04,
Wagstaff’ ICML01]

Group-level constraints

Clustering with cardinality constraints

L 31 cluster1 = vt .. __Cluster2:




Constrained Clustering

Instance-level constraints Group-level constraints

Clustering with pair-wise constraints
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Clustering with cardinality constraints
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Must-link constraint

 E.g.,, 7images in cluster 1 and 3 images in cluster 2
————— Cannot link constraint

*  Well covered in literature [Basu’SDMO04, Bilenko’ICMLO4,
Wagstaff’ ICML01]



Constrained Clustering

Group-level constraints

Clustering with cardinality constraints

cluster 2 |

 E.g.,, 7images in cluster 1 and 3 images in cluster 2
* Limited coverage in literature

=> This work focuses on group-level constraints
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Applications

* Political election: [Quadrianto’JMLR09]

State Date

] Alask 1/24

E.g., Clinton vs. Trump electoral map Ar?;:a 4::25
California 5/2

Connecticut 4/12

Task: Cluster individuals by political affiliation

Clinton
a4
437
56
48

Trump
49
35
34
40
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Applications

* Political election: [Quadrianto’JMLR09]

State Date Clinton Trump
. Alask 1/24 44 49
E.g., Clinton vs. Trump electoral map e 4::25 o <
California 5/2 56 34
Connecticut 4/12 48 40

Task: Cluster individual by political affiliation

e Health-care data: [Yu’'14]

@ B Type 1

E.g., Proportions of 2 types of diabetes 80.0 Type 2

Task: Cluster type 1 versus type 2 diabetes (e.g., for drug recommendation)



Problem formulation

Observed data

Xl XZ

* Observed data: ﬁ) H

e X = [X{,X,, ..., Xy ], where X; € RY denotes
the it? data point.

* N=[N{,N,,...,N¢], where N, indicates the
number of samples in class c.

 Hidden data:

*Y = [y,¥y, ...,Vn ] denotes the hidden label
for each sample, y; € {1,2, ..., C}.
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Problem formulation

Observed data

X>

 Observed data:

* X = [Xy1,Xp,...,Xp], where x; € RY denotes the
data point.

. N IN1, Ny, ..., Nc], where N, indicates the
number of samples in class c.

. Hidden data:

V1, Y n| denotes the hidden label for
each sampzle yi €{1,2,...,C}.

e Goal:

 Learna ma plng for each feature vector in R9 to
alabelin {1,2, ..., C}.




Discriminative model with cardinality constraints

* Suppose label y; is known for x;, for all i
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Logistic reqrek
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Discriminative model with cardinality constraints (cont.)

* However, y; is unknown

v ®

Logistic reqgression
eWITX'

p(yi = clxi, w) = ZC—I eWLx; @




Discriminative model with cardinality constraints (cont.)

_________________________________



Discriminative model with cardinality constraints (cont.)

O Challenge: Too many ways to partition given N (e.g., N = [7,3])
X.
|

Logistic regression

________________________________

Cardinality constraints

Crispness on the boundary may help
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Model: Cluster crispness

* Generate s labels for each sample
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Model: Cluster crispness

* Generate s labels for each sample

» Test if s labels disagree using d; (d; € {0, 1})

* Higher crispness, smaller no. of disagreements over the
data




Model: Cluster crispness

* Generate s labels for each sample

» Test if s labels disagree using d; (d; € {0, 1})

* Higher crispness, smaller no. of disagreements over the
data

* m controls total crispness in all data points

p(I=1d)=1]> d: <m] (misa hyper-parameter)

i=1



Cluster crispness vs. Entropy
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Crispness vs. entropy

(two class)



Model

W X
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Logistic regression \

D
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Cardinality constraints Cluster crispness

Hidden variables: y and u
(marginalize d)
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Inference

Complete log-likelihood L.(w) = log p(I,N,y, u|X, w)

Auxiliary function Q(W. W) = Eyujr Nw |:Lc: (W)}

mn

— {[ZP(% = C|N X, W )W X; — log(z wl'x;

=

e o -

+ s X | p(uz—cUXw WPX;, logz e Xi }

c=1

p(yizcaleawl)

E-step: p(yi — C‘N7X7 W/) — > & p(yi=LNIX,w)

Similarly for P(u; = ¢ | 1, X,w")
M-step:

wht D) — () | naQ(w,w(h))

Ow
w=w(h)

where

W, p— W(h’)

@6/0




Dynamic programming for E-step

. N = iz dli =, plys =, N=v|X,W) =p(yi = clx;, W)p(N\' = v — e.[X, w')

« Compute p(NM|X,w) ?



Dynamic programming for E-step

NS =30l =y ply = e N =X, W) = p(yi = clxi, W)p(NY = v — e.X, W)

V to chain trick
|

[Heckerman’UAI94] @

o(c") 0(n¢) 1M

« Compute p(NV[X, w)

H—O
O—O

* Infeasible for large C



Gaussian approximation for E-step

Central limit theorem O(nC) !!!

 y;~p(y; = c|x;,w) and y,,V>, ...,V are independent given X
* Nél = ?:1,¢iI[Yi =c],Vc

. NV follows central limit theorem when n is sufficiently large (true in real-world application)

i. . . . i : 1 _ V"
. NVis multivariate normal with mean M = 7:1,##1’ and variance I\ = j=1,2i i



Experiments on MNIST

Datasets: MNIST with pairs of digits: uniform among two classes.

Baseline: K-means, Maximum-margin clustering (MMC) [Xu’NIPS04], Regularized Information
Maximization (RIM) [Krause’NIPS10] (RIM uses cardinality constraints).

Evaluation metric: Normalized mutual information (NMI) [Jain’PRL10], averaged 10 times

Setting:
* MNIST is reasonably well separated, m = 0,s = 2
* Consider both dynamic programming implementation and Gaussian approximation
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Experiments on MNIST

Datasets: MNIST with pairs of digits: uniform among two classes.

Baseline: K-means, Maximum-margin clustering (MMC) [Xu’NIPS04], Regularized Information
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Experiments on MNIST

* Datasets: MNIST with pairs of digits: uniform among two classes.

* Baseline: K-means, Maximum-margin clustering (MMC) [Xu’NIPS04], Regularized Information
Maximization (RIM) [Krause’NIPS10] (RIM uses cardinality constraints).

* Evaluation metric: Normalized mutual information (NMI) [Jain’PRL10], averaged 10 times

* Setting:
* MNIST is reasonably well separated, m = 0,s = 2
* Consider both dynamic programming implementation and Gaussian approximation

Datasets Ivs.2 | 3vs.d | S5vs.6 | 7vs.8 | 9vs.0

DCCC-D | 0.70 | 093 | 0.72 | 0.89 | 0.93
DCCC-G | 070 | 093 | 0.72 | 0.89 | 0.93
RIM 0.73 | 0.89 | 0.69 | 0.88 | 0.93

MMC 0.64 | 0.81 0.71 0.76 | 0.90
Kmeans 0.46 | 0.81 0.56 | 0.79 | 0.81




Experiments on real datasets

* Datasets:
* HJA bird-song dataset (13 classes): each syllable is a sample

« MSCV2 (19 classes) + Voc12 are image annotation (20 classes) datasets: each segment is a sample

e Baseline:
« Consider Gaussian approximation O(nC)only due to the high complexity of dynamic programming 0 (n¢)

e Skip MMC since MMC is not applicable for multi-class

e Setting:
« s €{2,3},m € {10,20, ..., 50}. Tuning based on likelihood on validation set wrt. N.

Datasets HJA bird song | MSCV2 | Vocl2

DCCC-G | 0.40 0.31 0.12
RIM 0.39 0.25 0.11

K-means | 0.06 0.13 0.02




Conclusions

* We proposed a discriminative framework for clustering with
cardinality constraints and high crispness.

* We proposed both exact and approximate inference.

* We verified the effectiveness of our method on synthetic and real
world datasets.
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