

Discriminative Clustering with Cardinality Constraints

The 2018 International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Calgary, Canada

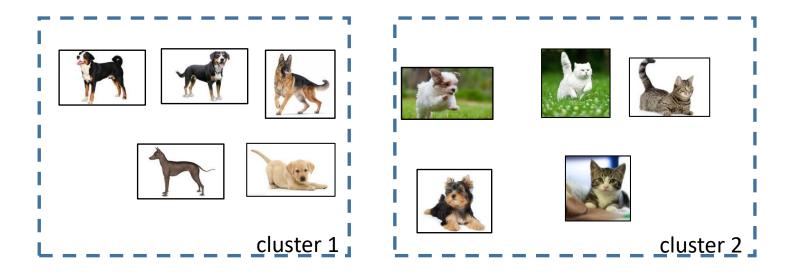
Anh T. Pham (PhD student), Raviv Raich, and Xiaoli Z. Fern

School of EECS, Oregon State University, Corvallis, OR 97331-5501, USA

{phaman,raich,xfern}@eecs.oregonstate.edu

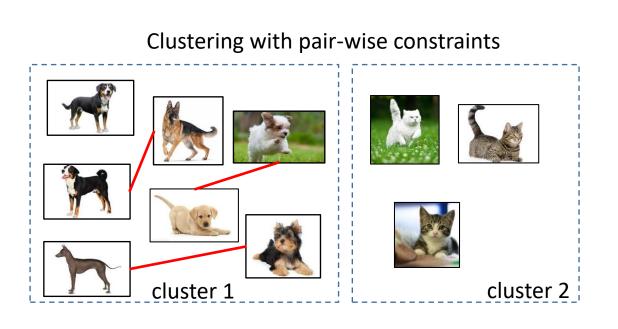
Clustering

- Clustering is one of the most important tasks in machine learning [Jain'PRL10]: e.g., displaying news and search engines.
- Goal: grouping similar objects in the same cluster



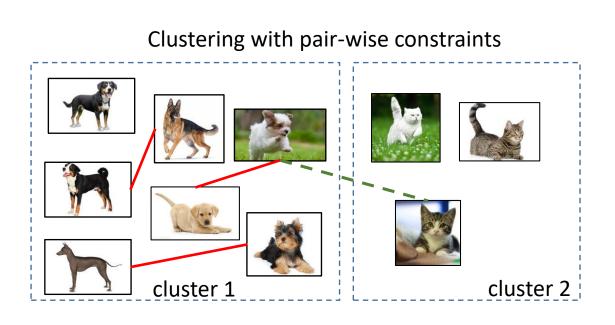
Clustering results

Instance-level constraints



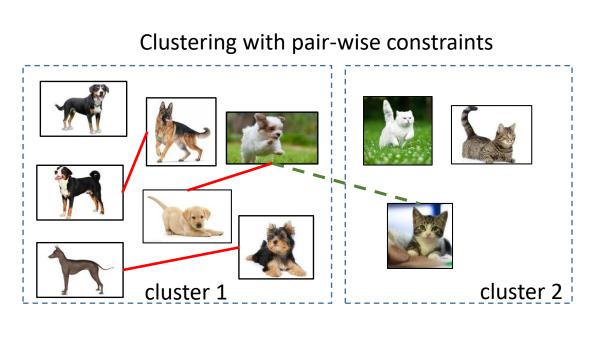
Must-link constraint

Instance-level constraints



Must-link constraint Cannot link constraint

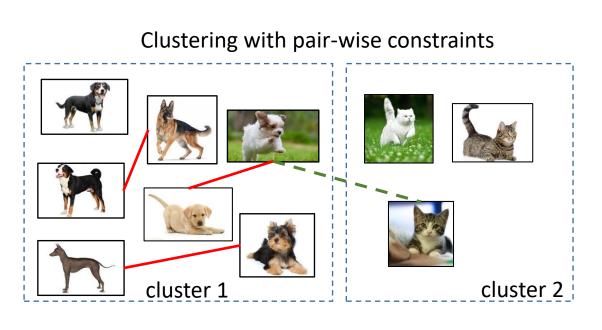
Instance-level constraints



Must-link constraint Cannot link constraint

• Well covered in literature [Basu'SDM04, Bilenko'ICML04, Wagstaff'ICML01]

Instance-level constraints

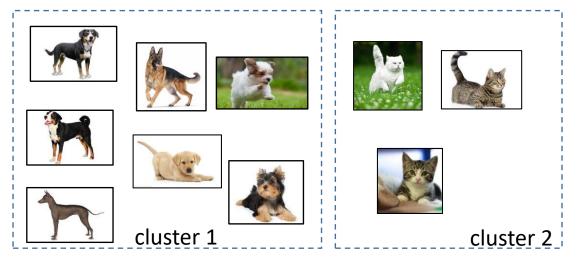


Must-link constraint Cannot link constraint

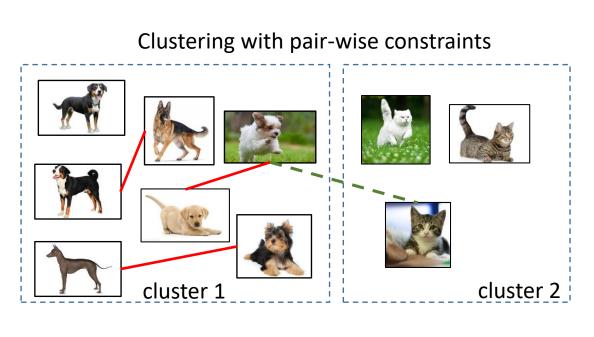
• Well covered in literature [Basu'SDM04, Bilenko'ICML04, Wagstaff'ICML01]

Group-level constraints

Clustering with cardinality constraints



Instance-level constraints

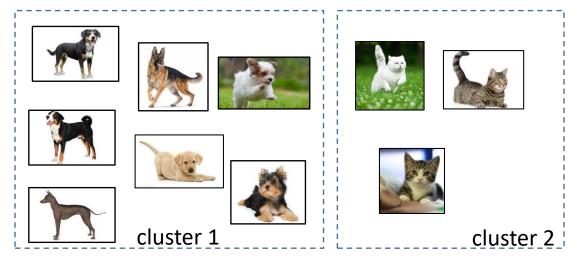


Must-link constraint Cannot link constraint

• Well covered in literature [Basu'SDM04, Bilenko'ICML04, Wagstaff'ICML01]

Group-level constraints

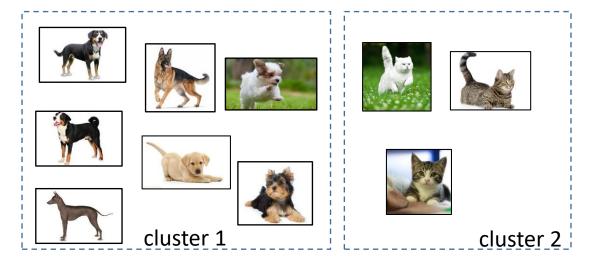
Clustering with cardinality constraints



• E.g., 7 images in cluster 1 and 3 images in cluster 2

Group-level constraints

Clustering with cardinality constraints



- E.g., 7 images in cluster 1 and 3 images in cluster 2
- Limited coverage in literature

→ This work focuses on group-level constraints

Applications

• Political election: [Quadrianto'JMLR09]

E.g., Clinton vs. Trump electoral map

State	Date	Clinton	Trump
Alaska	1/24	44	49
Arizona	4/26	42	35
California	5/2	56	34
Connecticut	4/12	48	40

Task: Cluster individuals by political affiliation

Applications

• Political election: [Quadrianto'JMLR09]

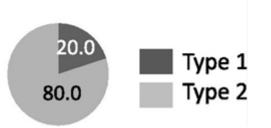
E.g., Clinton vs. Trump electoral map

State	Date	Clinton	Trump
Alaska	1/24	44	49
Arizona	4/26	42	35
California	5/2	56	34
Connecticut	4/12	48	40

Task: Cluster individual by political affiliation

• Health-care data: [Yu'14]

E.g., Proportions of 2 types of diabetes



Task: Cluster type 1 versus type 2 diabetes (e.g., for drug recommendation)

Problem formulation

- Observed data:
 - $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n]$, where $\mathbf{x}_i \in \mathbf{R}^d$ denotes the ith data point.
 - $\mathbf{N} = [N_1, N_2, ..., N_C]$, where N_c indicates the number of samples in class c.

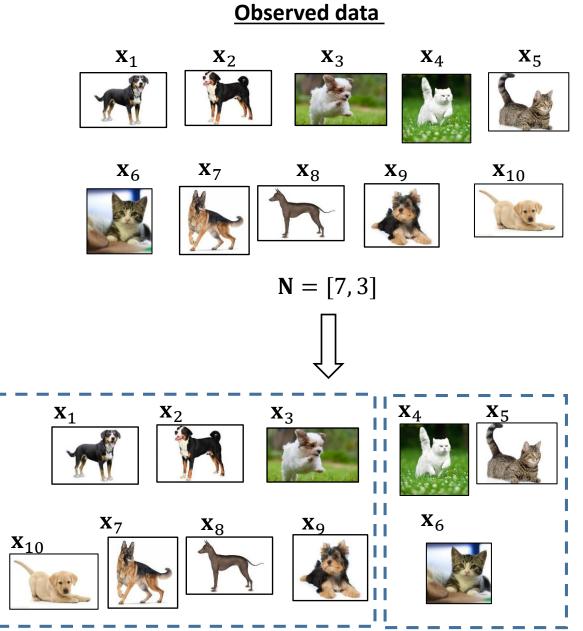
• Hidden data:

• $\mathbf{Y} = [y_1, y_2, ..., y_n]$ denotes the hidden label for each sample, $y_i \in \{1, 2, ..., C\}$.

Problem formulation

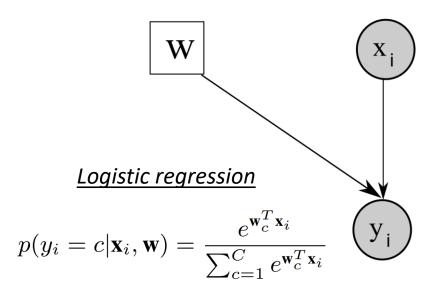
- Observed data:
 - $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n]$, where $\mathbf{x}_i \in \mathbf{R}^d$ denotes the i^{th} data point.
 - $\mathbf{N} = [N_1, N_2, ..., N_C]$, where N_c indicates the number of samples in class c.

- Hidden data:
 - $\mathbf{Y} = [y_1, y_2, ..., y_n]$ denotes the hidden label for each sample, $y_i \in \{1, 2, ..., C\}$.
- Goal:
 - Learn a mapping for each feature vector in R^d to a label in {1,2, ..., C}.



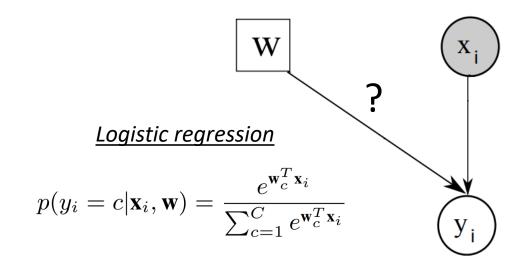
Discriminative model with cardinality constraints

- Suppose label y_i is $\underline{\textbf{known}}$ for $x_i,$ for all i

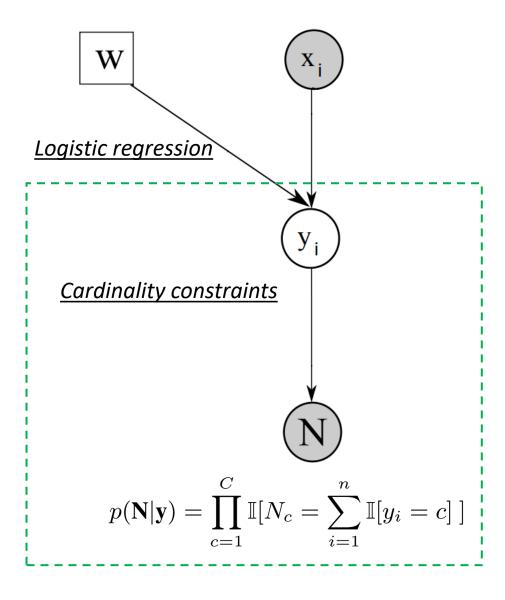


Discriminative model with cardinality constraints (cont.)

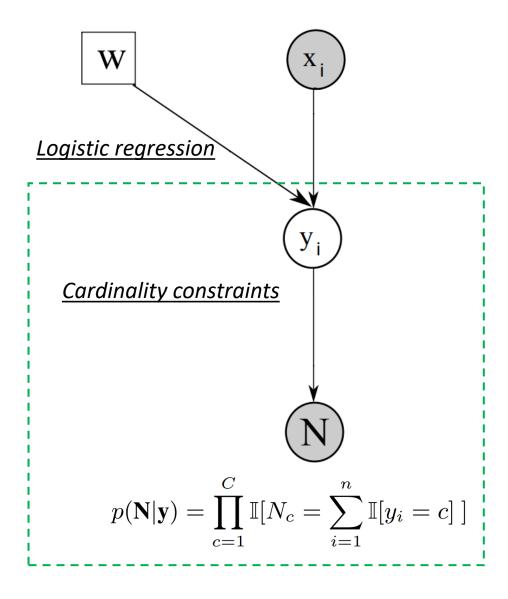
• However, y_i is <u>unknown</u>



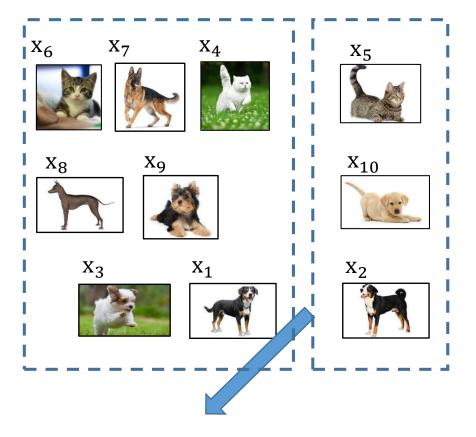
Discriminative model with cardinality constraints (cont.)



Discriminative model with cardinality constraints (cont.)



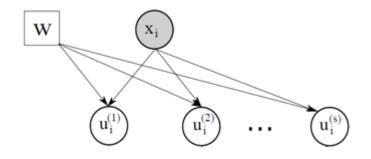
Challenge: Too many ways to partition given N (e.g., N = [7,3])



Crispness on the boundary may help

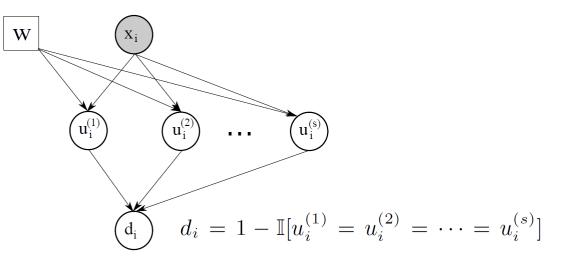
Model: Cluster crispness

• Generate *s* labels for each sample



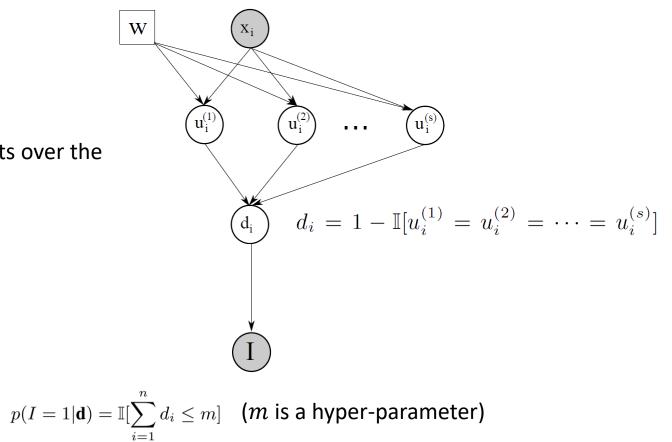
Model: Cluster crispness

- Generate *s* labels for each sample
- Test if s labels disagree using d_i ($d_i \in \{0, 1\}$)
- Higher crispness, smaller no. of disagreements over the data

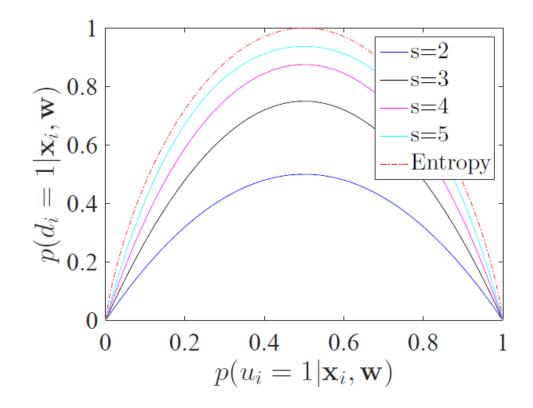


Model: Cluster crispness

- Generate *s* labels for each sample
- Test if s labels disagree using d_i ($d_i \in \{0, 1\}$)
- Higher crispness, smaller no. of disagreements over the data
- *m* controls total crispness in all data points



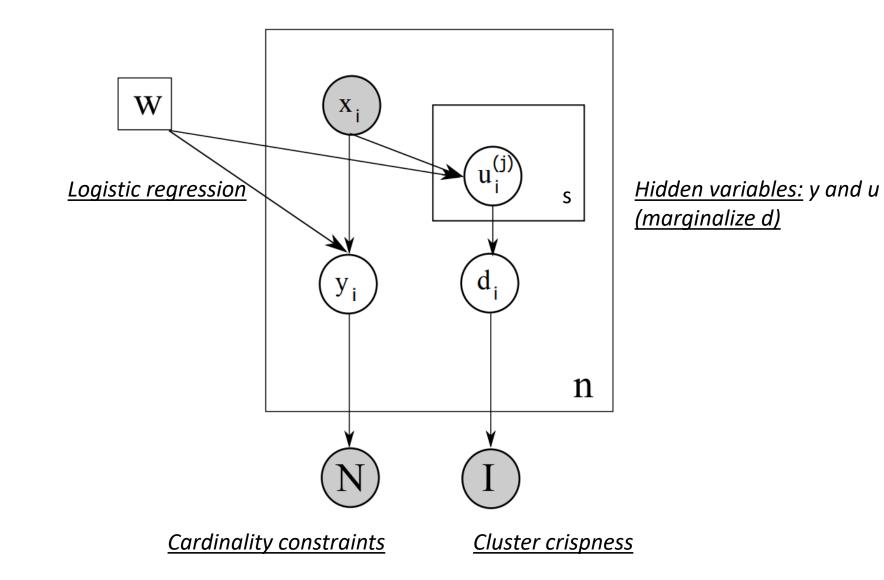
Cluster crispness vs. Entropy



Crispness vs. entropy

(two class)

Model



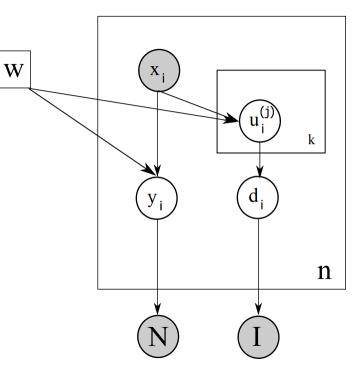
Inference

Complete log-likelihood $\mathbf{L}_{c}(\mathbf{w}) = \log p(I, \mathbf{N}, \mathbf{y}, \mathbf{u} | \mathbf{X}, \mathbf{w})$

Auxiliary function

$$Q(\mathbf{w}, \mathbf{w}') = E_{\mathbf{y}, \mathbf{u}|I, \mathbf{N}, \mathbf{w}'} \left[\mathbf{L}_{c}(\mathbf{w}) \right]$$

= $\zeta + \sum_{i=1}^{n} \left[\left[\sum_{c=1}^{C} p(y_{i} = c | \mathbf{N}, \mathbf{X}, \mathbf{w}'] \mathbf{w}_{c}^{T} \mathbf{x}_{i} - \log(\sum_{c=1}^{C} e^{\mathbf{w}_{c}^{T} \mathbf{x}_{i}}) \right] + s \times \left[\sum_{c=1}^{C} p(u_{i} = c | I, \mathbf{X}, \mathbf{w}'] \mathbf{w}_{c}^{T} \mathbf{x}_{i} - \log(\sum_{c=1}^{C} e^{\mathbf{w}_{c}^{T} \mathbf{x}_{i}}) \right] \right]$



E-step:
$$p(y_i = c | \mathbf{N}, \mathbf{X}, \mathbf{w}') = \frac{p(y_i = c, \mathbf{N} | \mathbf{X}, \mathbf{w}')}{\sum_{l=1}^{C} p(y_i = l, \mathbf{N} | \mathbf{X}, \mathbf{w}')}$$
 where $\mathbf{w}' = \mathbf{w}^{(h)}$

Similarly for $P(u_i = c | I, X, w')$

M-step:

$$\mathbf{w}^{(h+1)} = \mathbf{w}^{(h)} + \eta \frac{\partial Q(\mathbf{w}, \mathbf{w}^{(h)})}{\partial \mathbf{w}} \bigg|_{\mathbf{w} = \mathbf{w}^{(h)}}$$

23

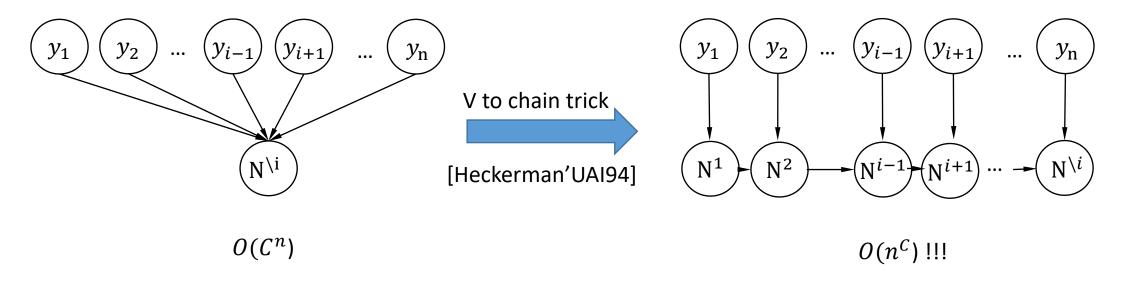
Dynamic programming for E-step

- $N_c^{\setminus i} = \sum_{j \neq i} I[y_j = c], \quad p(y_i = c, \mathbf{N} = \mathbf{v} | \mathbf{X}, \mathbf{w}') = p(y_i = c | \mathbf{x}_i, \mathbf{w}') p(\mathbf{N}^{\setminus i} = \mathbf{v} \mathbf{e}_c | \mathbf{X}, \mathbf{w}')$
- Compute $p(N^{i}|X, w')$?

Dynamic programming for E-step

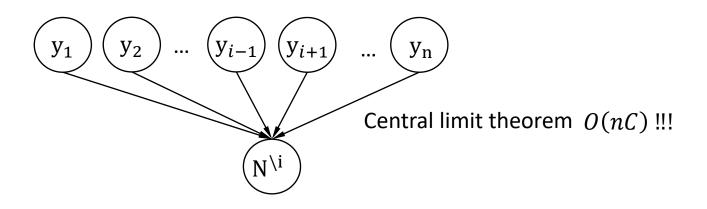
•
$$N_c^{\setminus i} = \sum_{j \neq i} I[y_j = c], \quad p(y_i = c, \mathbf{N} = \mathbf{v} | \mathbf{X}, \mathbf{w}') = p(y_i = c | \mathbf{x}_i, \mathbf{w}') p(\mathbf{N}^{\setminus i} = \mathbf{v} - \mathbf{e}_c | \mathbf{X}, \mathbf{w}')$$

• Compute $p(N^{i}|X, w')$



• Infeasible for large *C*

Gaussian approximation for E-step



- $y_i \sim p(y_i = c | \mathbf{x}_i, w)$ and $y_1, y_2, ..., y_n$ are independent given **X**
- $N_c^{\setminus i} = \sum_{j=1,\neq i}^n I[y_i = c], \forall c$
- N^{i} follows central limit theorem when n is sufficiently large (true in real-world application)
- N^{\i} is multivariate normal with mean $\mu^{i} = \sum_{j=1, \neq i}^{n} \mu_i$ and variance $\Sigma^{i} = \sum_{j=1, \neq i}^{n} \Sigma_i$

- **Datasets:** MNIST with pairs of digits: uniform among two classes.
- <u>Baseline:</u> K-means, Maximum-margin clustering (MMC) [Xu'NIPS04], Regularized Information Maximization (RIM) [Krause'NIPS10] (*RIM uses cardinality constraints*).
- **Evaluation metric:** Normalized mutual information (NMI) [Jain'PRL10], averaged 10 times
- <u>Setting:</u>
 - MNIST is reasonably well separated, m = 0, s = 2
 - Consider both dynamic programming implementation and Gaussian approximation

- **Datasets:** MNIST with pairs of digits: uniform among two classes.
- <u>Baseline:</u> K-means, Maximum-margin clustering (MMC) [Xu'NIPS04], Regularized Information Maximization (RIM) [Krause'NIPS10] (*RIM uses cardinality constraints*).
- **Evaluation metric:** Normalized mutual information (NMI) [Jain'PRL10], averaged 10 times

• <u>Setting:</u>

- MNIST is reasonably well separated, m = 0, s = 2
- Consider both dynamic programming implementation and Gaussian approximation

Datasets	1vs.2	3vs.4	5vs.6	7vs.8	9vs.0
DCCC-D	0.70	0.93	0.72	0.89	0.93
DCCC-G	0.70	0.93	0.72	0.89	0.93

- **Datasets:** MNIST with pairs of digits: uniform among two classes.
- <u>Baseline:</u> K-means, Maximum-margin clustering (MMC) [Xu'NIPS04], Regularized Information Maximization (RIM) [Krause'NIPS10] (*RIM uses cardinality constraints*).
- **Evaluation metric:** Normalized mutual information (NMI) [Jain'PRL10], averaged 10 times

• <u>Setting:</u>

- MNIST is reasonably well separated, m = 0, s = 2
- Consider both dynamic programming implementation and Gaussian approximation

Datasets	1vs.2	3vs.4	5vs.6	7vs.8	9vs.0
DCCC-D	0.70	0.93	0.72	0.89	0.93
DCCC-G	0.70	0.93	0.72	0.89	0.93
RIM	0.73	0.89	0.69	0.88	0.93

- **Datasets:** MNIST with pairs of digits: uniform among two classes.
- <u>Baseline:</u> K-means, Maximum-margin clustering (MMC) [Xu'NIPS04], Regularized Information Maximization (RIM) [Krause'NIPS10] (*RIM uses cardinality constraints*).
- **Evaluation metric:** Normalized mutual information (NMI) [Jain'PRL10], averaged 10 times

• <u>Setting:</u>

- MNIST is reasonably well separated, m = 0, s = 2
- Consider both dynamic programming implementation and Gaussian approximation

Datasets	1vs.2	3vs.4	5vs.6	7vs.8	9vs.0
DCCC-D	0.70	0.93	0.72	0.89	0.93
DCCC-G	0.70	0.93	0.72	0.89	0.93
RIM	0.73	0.89	0.69	0.88	0.93
MMC	0.64	0.81	0.71	0.76	0.90
Kmeans	0.46	0.81	0.56	0.79	0.81

Experiments on real datasets

- Datasets:
 - HJA bird-song dataset (13 classes): each syllable is a sample
 - MSCV2 (19 classes) + Voc12 are image annotation (20 classes) datasets: each segment is a sample

• **Baseline**:

- Consider Gaussian approximation O(nC) only due to the high complexity of dynamic programming $O(n^{C})$
- Skip MMC since MMC is not applicable for multi-class

• <u>Setting:</u>

• $s \in \{2,3\}, m \in \{10,20, \dots, 50\}$. Tuning based on likelihood on validation set wrt. N.

Datasets	HJA bird song	MSCV2	Voc12
DCCC-G	0.40	0.31	0.12
RIM	0.39	0.25	0.11
K-means	0.06	0.13	0.02

Conclusions

- We proposed a discriminative framework for clustering with cardinality constraints and high crispness.
- We proposed both exact and approximate inference.
- We verified the effectiveness of our method on synthetic and real world datasets.

References

- [Yu'14] "On learning from label proportions," arXiv preprint arXiv:1402.5902, 2014.
- [Quadrianto'JMLR09] "Estimating labels from label proportions," Journal of Machine Learning Research, vol. 10, no. Oct, pp. 2349–2374, 2009.
- [Musicant'ICDM07] "Supervised learning by training on aggregate outputs," in International Conference on Data Mining, 2007, pp. 252–261.
- [Heckerman'UAI94] "A new look at causal independence," in Proceedings of the Conference on Uncertainty in Artificial Intelligence, 1994, pp. 286–292.
- [Xu'NIPS04] "Maximum margin clustering," in Advances in neural information processing systems, 2004, pp. 1537–1544.
- [Krause'NIPS10] "Discriminative clustering by regularized information maximization," in Advances in neural information processing systems, 2010, pp. 775–783.
- [Jain'PRL10] "Data clustering: 50 years beyond k-means," Pattern recognition letters, vol. 31, no. 8, pp. 651–666, 2010.
- [Basu'SDM04] "Active semi-supervision for pairwise constrained clustering," in SIAM International Conference on Data Mining, 2004, pp. 333–344.
- [Bilenko'ICML04] "Integrating constraints and metric learning in semi-supervised clustering," in International Conference on Machine Learning, 2004, pp. 11.
- [Wagstaff'ICML01] "Constrained k-means clustering with background knowledge," in International Conference on Machine Learning, 2001, pp. 577--584.