Sparse Phase Retrieval Using Partial Nested Fourier Samplers

Heng Qiao Piya Pal

University of Maryland

qiaoheng@umd.edu

November 14, 2015

- Problem Formulations
- Related Work

< 67 ▶

э

- Problem Formulations
- Related Work

2 PNFS and Iterative Recovery Algorithm

• Partial Nested Fourier Sampler (PNFS)

- Problem Formulations
- Related Work

2 PNFS and Iterative Recovery Algorithm

• Partial Nested Fourier Sampler (PNFS)

Sparse Phase Retrieval with Prior Knowledge

- Cancellation based Approach
- Number of Measurements via Convex Program

- Problem Formulations
- Related Work

2 PNFS and Iterative Recovery Algorithm

• Partial Nested Fourier Sampler (PNFS)

Sparse Phase Retrieval with Prior Knowledge

- Cancellation based Approach
- Number of Measurements via Convex Program

Numerical Results

Definition

Phase Retrieval: Recovery of a signal given the magnitude of its measurements.

Applications:

- X-ray crystallography: recover Bragg peaks from missing-phase data
- Diffraction imaging, optics, astronomical imaging, microscopy
- Acoustics, blind channel estimation, interferometry, quantum information

$$\mathbf{y}_i = |\langle \mathbf{x}, \mathbf{f}_i \rangle|$$

$$egin{aligned} & y_i = |\langle \mathbf{x}, \mathbf{f}_i
angle | \ & \Leftrightarrow y_i^2 = \mathbf{f}_i^H \mathbf{x} \mathbf{x}^H \mathbf{f}_i \end{aligned}$$

$$\begin{aligned} y_i &= |\langle \mathbf{x}, \mathbf{f}_i \rangle| \\ \Leftrightarrow y_i^2 &= \mathbf{f}_i^H \mathbf{x} \mathbf{x}^H \mathbf{f}_i \\ \Leftrightarrow y_i^2 &= \left(\mathbf{f}_i^T \otimes \mathbf{f}_i^H \right) \operatorname{Vec} \left(\mathbf{x} \mathbf{x}^H \right) \end{aligned}$$

$$\begin{aligned} y_i &= |\langle \mathbf{x}, \mathbf{f}_i \rangle| \\ \Leftrightarrow y_i^2 &= \mathbf{f}_i^H \mathbf{x} \mathbf{x}^H \mathbf{f}_i \\ \Leftrightarrow y_i^2 &= \left(\mathbf{f}_i^T \otimes \mathbf{f}_i^H \right) \operatorname{Vec} \left(\mathbf{x} \mathbf{x}^H \right) \end{aligned}$$

 $\mathcal F$ can consist of either Fourier or general samplers [1].

() For general data **x** and samplers \mathcal{F} , M = 4N - 4 is sufficient.

- **(**) For general data **x** and samplers \mathcal{F} , M = 4N 4 is sufficient.
- Por s-sparse data x:

- **(**) For general data **x** and samplers \mathcal{F} , M = 4N 4 is sufficient.
- Por s-sparse data x:
 - If \mathcal{F} consists of DFT samplers, $M \ge s^2 s + 1$ with Collision Free Condition [2].

- **(**) For general data **x** and samplers \mathcal{F} , M = 4N 4 is sufficient.
- Por s-sparse data x:
 - If \mathcal{F} consists of DFT samplers, $M \ge s^2 s + 1$ with Collision Free Condition [2].
 - If \mathcal{F} consists of random samplers, $M = O(s \log N)$ is sufficient via convex program.

Coupling Difficulty and Collision Free Condition

If the samplers in $\mathcal F$ are drawn from DFT of proper dimension, phase retrieval can be formulated as recovering data from its autocorrelation $\mathbf{r_x} \in \mathbb C^{2N-1}$ defined as

$$[\mathbf{r}_{\mathbf{x}}]_{I} = \sum_{k=\max\{1,1-I\}}^{\min\{N,N-I\}} x_{k}\bar{x}_{k+I} \quad 0 \le |I| \le N-1$$

The pair-wise products are coupled together which hides the sparse support of \mathbf{x} . To avoid this, Collision Free Condition is proposed [2].

Definition

(Collision-Free Condition) [2] A sparse vector **x** has collision-free property if for pairs of distinct entries (p, q), (m, n) in the support of **x**, $p - q \neq m - n$ unless (p, q) = (m, n).

- \mathcal{F} consists of Fourier samplers.
- The sufficient measurement number *M* should be $O(s \log N)$ with convex program.
- The Collision Free Condition on the sparse support should be relaxed.

PNFS is a generalization of DFT-based sampler which with nested index array instead of consecutive one

Definition

(Partial Nested Fourier Sampler:) We define a Partial Nested Fourier Sampler (PNFS) as

$$\mathbf{f}_i = \alpha \left[z_i^1, z_i^2, \cdots, z_i^{N-1}, z_i^{2N-2} \right]^T$$

where $\alpha = (4N - 5)^{-1/4}$ and $z_i = e^{j2\pi(i-1)/(4N-5)}$.

Decoupling Effect of Nested Index Set

The nested index set $\mathcal{N} = \{1, 2, \dots, N-1, 2N-2\}$ can resolve the coupling difficulty by exploiting the second-order difference set.

Example

Consider N = 3 and two different index set $\mathcal{N}_1 = \{0, 1, 2\}$ and $\mathcal{N}_2 = \{0, 1, 3\}$. \mathcal{N}_2 is a nested index set. For \mathcal{N}_1 , ignoring the negative part, we have

$$\{z_i^0: x_1\bar{x}_1, x_2\bar{x}_2, x_3\bar{x}_3\} \{z_i^1: x_1\bar{x}_2, x_2\bar{x}_3\} \{z_i^2: x_1\bar{x}_3\}$$

For \mathcal{N}_2 we have

$$\{z_i^0: x_1\bar{x}_1, x_2\bar{x}_2, x_3\bar{x}_3\} \{z_i^1: x_1\bar{x}_2\} \{z_i^2: x_2\bar{x}_3\} \{z_i^3: x_1\bar{x}_3\}$$

Decoupling Effect of Nested Index Set

The nested index set $\mathcal{N} = \{1, 2, \dots, N-1, 2N-2\}$ can resolve the coupling difficulty by exploiting the second-order difference set.

Example

Consider N = 3 and two different index set $\mathcal{N}_1 = \{0, 1, 2\}$ and $\mathcal{N}_2 = \{0, 1, 3\}$. \mathcal{N}_2 is a nested index set. For \mathcal{N}_1 , ignoring the negative part, we have

$$\{z_i^0: x_1\bar{x}_1, x_2\bar{x}_2, x_3\bar{x}_3\} \{z_i^1: x_1\bar{x}_2, x_2\bar{x}_3\} \{z_i^2: x_1\bar{x}_3\}$$

For \mathcal{N}_2 we have

$$\{z_i^0: x_1\bar{x}_1, x_2\bar{x}_2, x_3\bar{x}_3\} \{z_i^1: x_1\bar{x}_2\} \{z_i^2: x_2\bar{x}_3\} \{z_i^3: x_1\bar{x}_3\}$$

Advantage: The sparse support is revealed in vectorized measurements model.

Heng Qiao, Piya Pal (UMD)

イロト 不得下 イヨト イヨト

Measurement Structure with PNFS

Plugging the PNFS sampler \mathbf{f}_i into vectorized measurement model, we have

$$y_i^2 = \frac{1}{\sqrt{4N-5}} \left[z_i^{-(2N-3)}, \cdots, z_i^{-1}, 1, z_i^1, \cdots, z_i^{2N-3} \right] \tilde{\mathbf{x}}$$
(1)

where $\tilde{\bm{x}}\in\mathbb{C}^{4N-5}$ is the corresponding rearranged version of $\mathsf{Vec}(\bm{x}\bm{x}^H)$ with following form

$$[\tilde{\mathbf{x}}]_{m} = \begin{cases} \sum_{k=1}^{N} |x_{k}|^{2} & m = 0 \\ \sum_{k=1}^{N-1-m} x_{k} \bar{x}_{k+m} & m = 1, 2, \cdots, N-2 \\ x_{2N-2-m} \bar{x}_{N} & N-1 \le m \le 2N-3 \\ \hline \overline{[\tilde{\mathbf{x}}]_{-m}} & m < 0 \end{cases}$$

$$(2)$$

Heng Qiao, Piya Pal (UMD)

November 14, 2015 10 / 22

Permuted Version of PNFS

The support of **x** is easily identified in $\tilde{\mathbf{x}}$ if x_N is nonzero. If no prior knowledge available, we will need column-permuted version of PNFS defined as

$$\mathbf{f}_{i}^{(l)} = \frac{1}{\sqrt[4]{4N-5}} \left[z_{i}^{1}, z_{i}^{2}, \cdots, z_{i}^{N-1}, z_{i}^{2N-2} \right] \mathbf{\Pi}^{(l)}$$
(3)

 $\Pi^{(l)}$ is a permuting matrix such that the vector $\mathbf{x}^{(l)} = \Pi^{(l)}\mathbf{x}$ satisfies $[\mathbf{x}^{(l)}]_l = x_N, [\mathbf{x}^{(l)}]_N = x_l, [\mathbf{x}^{(l)}]_i = x_i, i \neq l, N.$ For each *l*, we collect \tilde{M} phaseless measurements $y_i^{(l)}, i = 1, 2, \cdots, \tilde{M}$ using the permuted PNFS vector (3) and obtain

$$\tilde{\mathbf{y}}^{(l)} = \mathbf{Z}\tilde{\mathbf{x}}^{(l)} \tag{4}$$

where $[\tilde{\mathbf{y}}^{(l)}]_i = (y_i^{(l)})^2, [\mathbf{Z}]_{i,m} = \frac{1}{\sqrt{4N-5}} e^{j2\pi \frac{(i-1)m}{4N-5}}, 1 \le i \le \tilde{M}, -2N+3 \le m \le 2N-3.$ Objective: If **x** is non-zero, we will finally find $\Pi_{(1)}^{(l)}$ such that $[\mathbf{x}_{(1)}^{(l)}]_N \ne 0$.

11 / 22

Input: data **x** Output: estimation $\mathbf{x}^{\#}$ Initialization: I = NLoop:

• Step S1: Using the permuted PNFS vectors (3), obtain 4N - 5 phaseless measurements

$$y_i^{(l)} = | < \mathbf{x}, \mathbf{f}_i^{(l)} > |, i = 1, 2, \cdots 4N - 5$$

Recover $\mathbf{\tilde{x}}^{(l)} = \mathbf{Z}^{-1}\mathbf{\tilde{y}}^{(l)}$

Step S2: If [x̃^(l)]_m = 0, ∀|m| ≥ N − 1, declare x_l = 0. Assign l → l − 1 and go back to Step S1. If [x̃^(l)]_m ≠ 0 for some m with |m| ≥ N − 1, proceed to the recovery stage.

Iterative Algorithm: Continued

Recovery:

• Choose $m^* \in \{1, 2, \cdots, N-2\}$ such that $[\mathbf{\tilde{x}}^{(l)}]_{m^*} \neq 0$ and compute

$$|x_N^{(l)}| = \sqrt{[\mathbf{\tilde{x}}^{(l)}]_{m^*}/\beta}$$

&
$$\beta = \sum_{k=1}^{N-1-m^*} [\tilde{\mathbf{x}}^{(l)}]_{2N-2-k} \overline{[\tilde{\mathbf{x}}^{(l)}]}_{2N-2-k-m^*}$$
Obtain estimate $\mathbf{x}^{\#}$ as

$$[\mathbf{x}^{\#}]_{q} = \begin{cases} \left(\frac{[\tilde{\mathbf{x}}^{(l)}]_{2N-2-q}}{|\mathbf{x}_{N}^{(l)}|}\right) & q \neq \{l, N\} \\ |\mathbf{x}_{N}^{(l)}| & q = l \\ \frac{[\tilde{\mathbf{x}}^{(l)}]_{2N-2-l}}{|\mathbf{x}_{N}^{(l)}|} & q = N \end{cases}$$

The complexity of the algorithm mainly depends on the number of trials to find $[\mathbf{x}^{(l)}]_N \neq 0$.

Theorem

Let $\mathbf{x} \in \mathbb{C}^N$ be s-sparse with $s \ge 3$. The estimate $\mathbf{x}^{\#}$ produced by the iterative algorithm described in Table 1 is equal to \mathbf{x} (in the sense of $\mathbb{C} \setminus \mathbb{T}$) if the total number of phaseless measurements M equals 4N - 5 for the best case and (N - s + 1)(4N - 5) for the worst case.

Corollary

If **x** is not sparse (i.e. s = N), the number of measurements needed for recovering **x** is M = 4N - 5.

Sketch of Proof

The main idea in the proof is to show the existence of m^* such that $[\mathbf{\tilde{x}}^{(l)}]_{m^*} \neq 0$. Denote $\mathbf{\tilde{x}} = [x_1, x_2, \cdots, x_{N-1}]^T$ and let $\mathbf{r}_{\mathbf{\tilde{x}}} \in \mathbb{C}^{2N-3}$ be the autocorrelation vector of $\mathbf{\tilde{x}}$. Suppose m^* does not exist, implying $[\mathbf{\tilde{x}}]_m = 0$ for $1 \leq |m| \leq N-2$. Hence, $[\mathbf{r}_{\mathbf{\tilde{x}}}]_n = \gamma \delta(n)$ where $\gamma = [\mathbf{\tilde{x}}]_0 - |x_N|^2$ and $\delta(n)$ is Kronecker delta. This means that $\mathbf{\hat{r}}_{\mathbf{\tilde{x}}}(e^{j\omega}) \triangleq \sum_{n=-N+2}^{N-2} [\mathbf{r}_{\mathbf{\tilde{x}}}]_n e^{-j\omega n}$ is an all-pass filter. However, $\mathbf{\hat{r}}_{\mathbf{\tilde{x}}}(e^{j\omega}) = |\mathbf{\tilde{x}}(e^{j\omega})|^2$ where $\mathbf{\hat{x}}(e^{j\omega}) \triangleq \sum_{n=-N+2}^{N-2} [\mathbf{\tilde{x}}]_n e^{-j\omega n}$. This implies $\mathbf{\hat{x}}(e^{j\omega})$ is also an all-pass filter. Since $\mathbf{\hat{x}}(e^{j\omega})$ is an FIR filter, this is not possible unless we have

$$[\breve{\mathbf{x}}]_n = \lambda \delta(n - n_0) \tag{5}$$

for some n_0 satisfying $1 \le n_0 \le N - 1$ and λ is a constant. However, since $s \ge 3$, $\mathbf{\tilde{x}}$ has at least two non zero entries which contradicts (5). Therefore, the existence of m^* is guaranteed.

Sketch of Proof

The main idea in the proof is to show the existence of m^* such that $[\mathbf{\tilde{x}}^{(l)}]_{m^*} \neq 0$. Denote $\mathbf{\tilde{x}} = [x_1, x_2, \cdots, x_{N-1}]^T$ and let $\mathbf{r}_{\mathbf{\tilde{x}}} \in \mathbb{C}^{2N-3}$ be the autocorrelation vector of $\mathbf{\tilde{x}}$. Suppose m^* does not exist, implying $[\mathbf{\tilde{x}}]_m = 0$ for $1 \leq |m| \leq N-2$. Hence, $[\mathbf{r}_{\mathbf{\tilde{x}}}]_n = \gamma \delta(n)$ where $\gamma = [\mathbf{\tilde{x}}]_0 - |x_N|^2$ and $\delta(n)$ is Kronecker delta. This means that $\mathbf{\hat{r}}_{\mathbf{\tilde{x}}}(e^{j\omega}) \triangleq \sum_{n=-N+2}^{N-2} [\mathbf{r}_{\mathbf{\tilde{x}}}]_n e^{-j\omega n}$ is an all-pass filter. However, $\mathbf{\hat{r}}_{\mathbf{\tilde{x}}}(e^{j\omega}) = |\mathbf{\tilde{x}}(e^{j\omega})|^2$ where $\mathbf{\hat{x}}(e^{j\omega}) \triangleq \sum_{n=-N+2}^{N-2} [\mathbf{\tilde{x}}]_n e^{-j\omega n}$. This implies $\mathbf{\hat{x}}(e^{j\omega})$ is also an all-pass filter. Since $\mathbf{\hat{x}}(e^{j\omega})$ is an FIR filter, this is not possible unless we have

$$[\breve{\mathbf{x}}]_n = \lambda \delta(n - n_0) \tag{5}$$

for some n_0 satisfying $1 \le n_0 \le N - 1$ and λ is a constant. However, since $s \ge 3$, $\mathbf{\tilde{x}}$ has at least two non zero entries which contradicts (5). Therefore, the existence of m^* is guaranteed.

Observation: PNFS hits the lower bound 4N - 5 if x has no zero entries.

If we have some prior knowledge of **x** that x_N is nonzero, PNFS can achieve better bound for sparse phase retrieval. This is based on the idea of cancellation via two sets of measurements, $\mathbf{\tilde{y}}, \mathbf{\tilde{y}}' \in \mathbb{C}^{\tilde{M}}$ as

$$[\tilde{\mathbf{y}}]_i = | < \mathbf{x}, \mathbf{f}_i > |^2 \tag{6}$$

$$[\mathbf{\tilde{y}}']_i = |\langle \mathbf{x}, \mathbf{f}'_i \rangle|^2 \tag{7}$$

where \mathbf{f}_i denotes the PNFS vector (as in Def. 3) and \mathbf{f}'_i is defined as

$$\mathbf{f}'_{i} = \frac{1}{\sqrt[4]{4N-5}} \left[z_{i}^{1}, z_{i}^{2}, \cdots, z_{i}^{N-1}, 0 \right]$$
(8)

where $z_i = e^{j2\pi(i-1)/(4N-5)}$.

Cancellation of Measurements: Continued

Denoting $\boldsymbol{\hat{y}} = \boldsymbol{\tilde{y}} - \boldsymbol{\tilde{y}}'$, we have

$$\hat{\mathbf{y}} = \mathbf{Z}\hat{\mathbf{x}} \tag{9}$$

where

 $[\hat{\mathbf{x}}]_{m} = \begin{cases} |x_{N}|^{2} & m = 0 \\ 0 & m = 1, 2, \cdots, N - 2 \\ x_{2N-2-m} \bar{x}_{N} & m = N - 1, \cdots, 2N - 3 \\ \hline \overline{[\hat{\mathbf{x}}]_{-m}} & m < 0 \end{cases}$

and $\mathbf{Z} \in \mathbb{C}^{\tilde{M}, 4N-5}$ defined as in (4). Notice that $\tilde{\mathbf{x}}$ has sparsity 2s - 1 and support of \mathbf{x} (except the Nth entry) is identical to that of the subvector of $\tilde{\mathbf{x}}$ indexed by $m = N - 1, \dots, 2N - 3$.

The power of cancellation is revealing the sparse support of \mathbf{x} and then convex program is applicable. We can recover $\hat{\mathbf{x}}$ by solving the l_1 minimization:

$$\min_{\theta} \|\theta\|_1$$
 subject to $\mathbf{\hat{y}} = \mathbf{Z}\theta$ (P1)

The vector \mathbf{x} can then be recovered from the solution of (**P1**).

The power of cancellation is revealing the sparse support of \mathbf{x} and then convex program is applicable.

We can recover $\hat{\mathbf{x}}$ by solving the l_1 minimization:

$$\min_{\mathbf{a}} \|\theta\|_1$$
 subject to $\mathbf{\hat{y}} = \mathbf{Z} \theta$ (P1)

The vector \mathbf{x} can then be recovered from the solution of (**P1**).

Theorem

Let $\mathbf{x} \in \mathbb{C}^N$ be a sparse vector with s non zero elements and $x_N \neq 0$. Suppose we construct the difference measurement vector $\hat{\mathbf{y}}$ as in (9) using \tilde{M} pairs of sampling vectors $\{\mathbf{f}_{i_k}, \mathbf{f}'_{i_k}\}_{k=1}^{\tilde{M}}$ where indices i_k are selected uniformly at random between 1 and 4N - 5. Then \mathbf{x} can be recovered (in sense of $\mathbb{C} \setminus \mathbb{T}$) by solving (P1) if $\tilde{M} = CslogN$ for some constant C.

Inefficiency of Collision Free Condition

Figure: The probability of "no-collision" as a function of sparsity *s*. The ambient dimension is N = 10000 and the result is averaged over 2000 runs.

Validation of the Theorem 2

The global phase ambiguity is $\rho = x_N/x_N^{\#}$. Using ρ we can compute the entry-wise estimation error as $|x_i - \rho x_i^{\#}|$ for $1 \le i \le N$.

Figure: The phase transition plot for Theorem 2. $M = 2\tilde{M}$ is the total number of measurements needed and N = 150. The red line represents $3s\log N$. The color bar denotes probability of success from 0 to 1. The white cells denote successful recoveries (i.e. $|x_i - \rho x_i^{\#}| \le 10^{-6}$ for all entries) and black cells denote failures. The results are averaged over 100 runs.

- The PNFS are general Fourier samplers and can be easily implemented via DFT plus coded diffraction [3].
- The recovery algorithm is deterministic for general case and hits lower bound for nowhere vanishing data **x**.
- If prior knowledge available, $O(s \log N)$ is possible with cancellation process and convex program.

- Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao and M. Segev, "Phase retrieval with application to optical imaging: A contemporary overview," *IEEE Signal Processing Magazine*, vol. 32, no. 3, pp. 87-109, May 2015.
- H. Ohisson and Y. C. Eldar, "On conditions for uniqueness in sparse phase retrieval," In: *IEEE International Conference on Accoustics, Speech and Signal Processing (ICASSP)*, 2014.
- E. Candès, X. Li and M. Soltanolkotabi, "Phase retrieval from coded diffraction patterns," *to appear in Appl. Comput. Harmon. Anal.*, 2014.