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Phase Retrieval and Applications

Definition

Phase Retrieval: Recovery of a signal given the magnitude of its
measurements.

Applications:

X-ray crystallography: recover Bragg peaks from missing-phase data

Diffraction imaging, optics, astronomical imaging, microscopy

Acoustics, blind channel estimation, interferometry, quantum
information
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Mathematical Formulation

Consider data x ∈ CN , sampler set F = {f1, f2, · · · , fM} and
measurements y = [y1, y2, · · · , yM ]T ∈ RM

+

yi = |〈x, fi 〉|

⇔ y2i = fHi xxH fi

⇔ y2i =
(

fTi ⊗ fHi

)
Vec

(
xxH

)

F can consist of either Fourier or general samplers [1].
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Prior Art and Results

Following is the summary of contemporary results on sufficient M [1]:

1 For general data x and samplers F , M = 4N − 4 is sufficient.

2 For s-sparse data x:

If F consists of DFT samplers, M ≥ s2 − s + 1 with Collision Free
Condition [2].
If F consists of random samplers, M = O(s logN) is sufficient via
convex program.
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Coupling Difficulty and Collision Free Condition

If the samplers in F are drawn from DFT of proper dimension, phase
retrieval can be formulated as recovering data from its autocorrelation
rx ∈ C2N−1 defined as

[rx]l =

min{N,N−l}∑
k=max{1,1−l}

xk x̄k+l 0 ≤ |l | ≤ N − 1

The pair-wise products are coupled together which hides the sparse
support of x. To avoid this, Collision Free Condition is proposed [2].

Definition

(Collision-Free Condition) [2] A sparse vector x has collision-free
property if for pairs of distinct entries (p, q), (m, n) in the support of x,
p − q 6= m − n unless (p, q) = (m, n).
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Objectives of this paper

F consists of Fourier samplers.

The sufficient measurement number M should be O(s logN) with
convex program.

The Collision Free Condition on the sparse support should be relaxed.
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Partial Nested Fourier Sampler

PNFS is a generalization of DFT-based sampler which with nested index
array instead of consecutive one

Definition

(Partial Nested Fourier Sampler:) We define a Partial Nested Fourier
Sampler (PNFS) as

fi = α
[
z1i , z

2
i , · · · , zN−1i , z2N−2i

]T
where α = (4N − 5)−1/4 and zi = e j2π(i−1)/(4N−5).
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Decoupling Effect of Nested Index Set

The nested index set N = {1, 2, · · · ,N − 1, 2N − 2} can resolve the
coupling difficulty by exploiting the second-order difference set.

Example

Consider N = 3 and two different index set N1 = {0, 1, 2} and
N2 = {0, 1, 3}. N2 is a nested index set.
For N1, ignoring the negative part, we have

{z0i : x1x̄1, x2x̄2, x3x̄3} {z1i : x1x̄2, x2x̄3} {z2i : x1x̄3}

For N2 we have

{z0i : x1x̄1, x2x̄2, x3x̄3} {z1i : x1x̄2} {z2i : x2x̄3} {z3i : x1x̄3}

Advantage: The sparse support is revealed in vectorized measurements
model.
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Measurement Structure with PNFS

Plugging the PNFS sampler fi into vectorized measurement model, we
have

y2i =
1√

4N − 5

[
z
−(2N−3)
i , · · · , z−1i , 1, z1i ,

· · · , z2N−3i

]
x̃ (1)

where x̃ ∈ C4N−5 is the corresponding rearranged version of Vec(xxH)
with following form

[x̃]m =



∑N
k=1 |xk |2 m = 0∑N−1−m
k=1 xk x̄k+m m = 1, 2, · · · ,N − 2

x2N−2−mx̄N N − 1 ≤ m ≤ 2N − 3

[x̃]−m m < 0

(2)

Heng Qiao, Piya Pal (UMD) Phase Retrieval with PNFS November 14, 2015 10 / 22



Permuted Version of PNFS

The support of x is easily identified in x̃ if xN is nonzero. If no prior
knowledge available, we will need column-permuted version of PNFS
defined as

f
(l)
i =

1
4
√

4N − 5

[
z1i , z

2
i , · · · , zN−1i , z2N−2i

]
Π(l) (3)

Π(l) is a permuting matrix such that the vector x(l) = Π(l)x satisfies
[x(l)]l = xN , [x

(l)]N = xl , [x
(l)]i = xi , i 6= l ,N.

For each l , we collect M̃ phaseless measurements y
(l)
i , i = 1, 2, · · · , M̃

using the permuted PNFS vector (3) and obtain

ỹ(l) = Zx̃(l) (4)

where [ỹ(l)]i = (y
(l)
i )2, [Z]i ,m = 1√

4N−5e
j2π (i−1)m

4N−5 , 1 ≤ i ≤ M̃, −2N + 3 ≤
m ≤ 2N − 3.
Objective: If x is non-zero, we will finally find Π(l) such that [x(l)]N 6= 0.
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Iterative Algorithm

Input: data x Output: estimation x#

Initialization: l = N
Loop:

1 Step S1: Using the permuted PNFS vectors (3), obtain 4N − 5
phaseless measurements

y
(l)
i = | < x, f

(l)
i > |, i = 1, 2, · · · 4N − 5

Recover x̃(l) = Z−1ỹ(l)

2 Step S2: If [x̃(l)]m = 0, ∀|m| ≥ N − 1, declare xl = 0. Assign
l → l − 1 and go back to Step S1.
If [x̃(l)]m 6= 0 for some m with |m| ≥ N − 1, proceed to the recovery
stage.
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Iterative Algorithm: Continued

Recovery:

1 Choose m∗ ∈ {1, 2, · · · ,N − 2} such that [x̃(l)]m∗ 6= 0 and compute

|x (l)N | =
√

[x̃(l)]m∗/β

& β =
∑N−1−m∗

k=1 [x̃(l)]2N−2−k [x̃(l)]2N−2−k−m∗

2 Obtain estimate x# as

[x#]q =



(
[x̃(l)]2N−2−q

|x(l)N |

)
q 6= {l ,N}

|x (l)N | q = l
[x̃(l)]2N−2−l

|x(l)N |
q = N
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Performance of Iterative Algorithm

The complexity of the algorithm mainly depends on the number of trials to
find [x(l)]N 6= 0.

Theorem

Let x ∈ CN be s-sparse with s ≥ 3. The estimate x# produced by the
iterative algorithm described in Table 1 is equal to x (in the sense of
C \T) if the total number of phaseless measurements M equals 4N − 5 for
the best case and (N − s + 1)(4N − 5) for the worst case.

Corollary

If x is not sparse (i.e. s = N), the number of measurements needed for
recovering x is M = 4N − 5.
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Sketch of Proof

The main idea in the proof is to show the existence of m∗ such that
[x̃(l)]m∗ 6= 0. Denote x̆ = [x1, x2, · · · , xN−1]T and let rx̆ ∈ C2N−3 be the
autocorrelation vector of x̆. Suppose m∗ does not exist, implying [x̃]m = 0
for 1 ≤ |m| ≤ N − 2. Hence, [rx̆]n = γδ(n) where γ = [x̃]0 − |xN |2 and
δ(n) is Kronecker delta. This means that r̂x̆(e jω) ,

∑N−2
n=−N+2[rx̆]ne

−jωn is

an all-pass filter. However, r̂x̆(e jω) = |ˆ̆x(e jω)|2 where
ˆ̆x(e jω) ,

∑N−2
n=−N+2[x̆]ne

−jωn. This implies ˆ̆x(e jω) is also an all-pass filter.

Since ˆ̆x(e jω) is an FIR filter, this is not possible unless we have

[x̆]n = λδ(n − n0) (5)

for some n0 satisfying 1 ≤ n0 ≤ N − 1 and λ is a constant. However, since
s ≥ 3, x̆ has at least two non zero entries which contradicts (5).
Therefore, the existence of m∗ is guaranteed.

Observation: PNFS hits the lower bound 4N − 5 if x has no zero entries.
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Cancellation of Measurements

If we have some prior knowledge of x that xN is nonzero, PNFS can
achieve better bound for sparse phase retrieval. This is based on the idea
of cancellation via two sets of measurements, ỹ, ỹ′ ∈ CM̃ as

[ỹ]i = | < x, fi > |2 (6)

[ỹ′]i = | < x, f
′
i > |2 (7)

where fi denotes the PNFS vector (as in Def. 3) and f
′
i is defined as

f
′
i =

1
4
√

4N − 5

[
z1i , z

2
i , · · · , zN−1i , 0

]
(8)

where zi = e j2π(i−1)/(4N−5).
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Cancellation of Measurements: Continued

Denoting ŷ = ỹ − ỹ′, we have

ŷ = Zx̂ (9)

where

[x̂]m =



|xN |2 m = 0

0 m = 1, 2, · · · ,N − 2

x2N−2−mx̄N m = N − 1, · · · , 2N − 3

[x̂]−m m < 0

and Z ∈ CM̃,4N−5 defined as in (4). Notice that x̃ has sparsity 2s − 1 and
support of x (except the Nth entry) is identical to that of the subvector of
x̃ indexed by m = N − 1, · · · , 2N − 3.
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Number of Measurements

The power of cancellation is revealing the sparse support of x and then
convex program is applicable.
We can recover x̂ by solving the l1 minimization:

min
θ
‖θ‖1 subject to ŷ = Zθ (P1)

The vector x can then be recovered from the solution of (P1).

Theorem

Let x ∈ CN be a sparse vector with s non zero elements and xN 6= 0.
Suppose we construct the difference measurement vector ŷ as in (9) using

M̃ pairs of sampling vectors {fik , f
′
ik
}M̃k=1 where indices ik are selected

uniformly at random between 1 and 4N − 5. Then x can be recovered (in
sense of C \ T) by solving (P1) if M̃ = Cs logN for some constant C .
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Inefficiency of Collision Free Condition
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Figure: The probability of “no-collision” as a function of sparsity s. The ambient
dimension is N = 10000 and the result is averaged over 2000 runs.
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Validation of the Theorem 2

The global phase ambiguity is ρ = xN/x
#
N . Using ρ we can compute the

entry-wise estimation error as |xi − ρx#i | for 1 ≤ i ≤ N.
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Figure: The phase transition plot for Theorem 2. M = 2M̃ is the total number of
measurements needed and N = 150. The red line represents 3slogN. The color
bar denotes probability of success from 0 to 1. The white cells denote successful
recoveries (i.e. |xi − ρx#i | ≤ 10−6 for all entries) and black cells denote
failures.The results are averaged over 100 runs.
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Contribution Summary

The PNFS are general Fourier samplers and can be easily
implemented via DFT plus coded diffraction [3].

The recovery algorithm is deterministic for general case and hits lower
bound for nowhere vanishing data x.

If prior knowledge available, O(s logN) is possible with cancellation
process and convex program.
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