Learning FOFE based FNN-LMs with noise contrastive estimation and part-of-speech features

Junfeng Hou, Shiliang Zhang, Lirong Dai

National Engineering Laboratory for Speech and Language Information Processing

University of Science and Technology of China, Hefei, China

Abstract

• Extend FOFE based FNN-LMs:

Add *transitions* of part-of-speech (POS) tags

as additional features

- \diamond Train with noise contrastive estimation (NCE)
- Better performance on PTB & LTCB:

Experiment

- Two benchmark tasks:
- i) Penn Treebank (PTB)

ii) Large Text Compression Benchmark (LTCB)

Corpus	Train	Valid	Test	vocabulary
PTB	930k	74k	82k	10k
LTCB	153M	8.9M	8.9M	80k

- \Rightarrow *Transitions* of POS is more meaningful than POS
- \diamond Dramatically speedup the training speed

Background

- **FOFE based FNN-LMs**
 - **Encodes** each partial sequence (history) based on a simple recursive formula (with $z_0 = 0$) as: $\mathbf{z}_t = \alpha \cdot \mathbf{z}_{t-1} + \mathbf{e}_t \quad (1 \le t \le T)$
 - \diamond A simple example:
 - A = [1, 0, 0], B = [0, 1, 0], C = [0, 0, 1] $\{ABC\} = \{\alpha^2, \alpha, 1\}, \{ABCBC\} = \{\alpha^4, \alpha^3 + \alpha, \alpha^2 + 1\}$
- NCE
 - \Rightarrow NNLM can be trained by the unnormalized probabilities without computing the normalization term of softmax layer
 - \diamond The normalization term is fixed for simplicity
 - $p(w \mid h, \theta) = \frac{1}{Z_{o}(h)} \exp(s_{\theta}(w, h)) \approx p_{\theta_{0}}^{h}(w) / Z^{h}$

PTB experiments

Model	Test PPL
trigram FNNLM (Zhang, 2015)	131
RNNLM (Mikolov, 2011)	123
2nd-order FOFE-FNNLM (Zhang, 2015)	108
+MonoPOS	105
+FOFE-MonoPOS	102
+FOFE-tiePOS	100

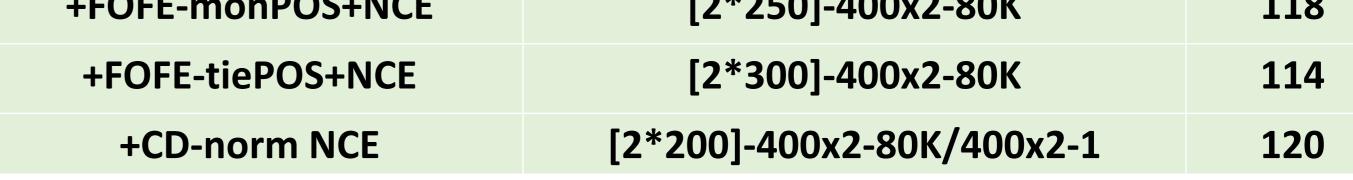
LTCB experiments

Model	architecture	Test PPL
FNNLM (Zhang, 2015)	[2*200]-400x2-80k	155
RNNLM (Zhang, 2015)	[1*600]-80K	112
FOFE FNNLM (Zhang, 2015)	[2*200]-400x2-80K	112
+FOFE-monoPOS	[2*250]-400x2-80K	109
+FOFE-tiePOS	[2*300]-400x2-80K	103
+NCE	[2*200]-400x2-80K	122
+FOFF-monPOS+NCF	[2*250]-400x2-80K	118

$$\mathbf{Z}_{\theta}(h) = \sum_{w'} \exp(s_{\theta}(w', h))$$

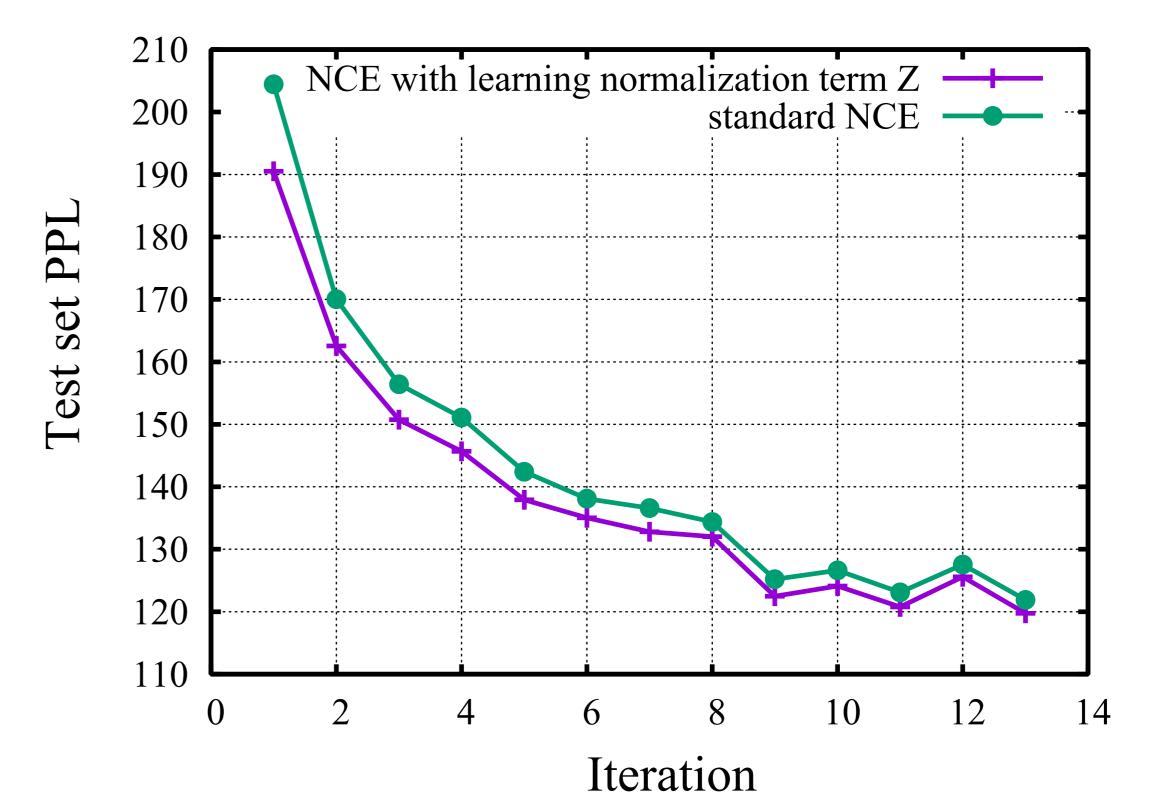
Main work

Normalization term


 $\sim \underbrace{\bullet \bullet \bullet \cdot \cdot \bullet \bullet}_{\cdot \cdot \cdot \bullet \bullet}$

FOFE

-


NCE ♦ Context dependent **NCE** output layer normalization term • • • • • • • is used to replace the $\bullet \bullet \bullet \bullet \bullet \bullet \bullet$ constant one Hidden layer \diamond Easily scale to huge $\bullet \bullet \bullet \bullet \bullet \bullet \bullet$ numbers of observed Projection layer • • • • • • contexts encountered by the models with One-hot vector $\bigcirc \circ \circ \bullet \bullet \bullet \circ \circ$ large context sizes

• Transitions of POS feature:

\diamond 20x times faster training speed with NCE

 \diamond Model has so many free parameters to meet the approximate per-context normalization constraint

A Model more *variations* of syntactic information

\diamond FOFE code:

$$\begin{bmatrix} \mathbf{Z}_{w_t} \\ \mathbf{Z}_{pos_t} \end{bmatrix} = \begin{bmatrix} \alpha_{w_t} \cdot \mathbf{Z}_{w_t} \\ \alpha_{pos_t} \cdot \mathbf{Z}_{pos_t} \end{bmatrix} + \begin{bmatrix} \mathbf{e}_{w_t} \\ \mathbf{e}_{pos_{t-1,t}} \end{bmatrix} \quad (1 \le t \le 7)$$

\diamond A simple example:

Only a few books fell in the reading room Sentence : **RB DT JJ NNS VBD IN DT** POS (totally 43): NN NN TiePOS (totally 1455): <s>_RB RB_DT DT_JJ JJ_NNS NNS_VBD VBD_IN IN_DT DT_NN NN_NN

Conclusion

1. Transitions of POS feature can further improve the performance of the FOFE based FNN-LMs

2. Constant normalization term is enough for NCE training and NCE can train the model much faster

Reference

- FOFE : S. Zhang, "The fixed-size ordinally-forgetting encoding method for neural network language", ACL 2015
- NCE : A. Mnih, "A fast and simple algorithm for training neural probabilistic language models", arXiv 2012