
CUED-RNNLM – An Open-Source Toolkit for

Efficient Training and Evaluation of Recurrent

Neural Network Language Models

Xie Chen, Xunying Liu, Yanmin Qian, Mark Gales and Phil Woodland

April 1, 2016

Cambridge University Engineering Department

ICASSP 2016

Overview

• RNNLM Overview

• Introduction of CUED-RNNLM

• Experiments on AMI corpus

Cambridge University

Engineering Department
1

ICASSP 2016

Overview of Statistical Language Models

• Language Model (LM): Estimate probability of word sequence

P (W) = P (w1, w2, ...wK) =
K∏

k=1

P (wk|wk−1, ...w1)

• Three widely used language models

– N-Gram Language Models (from 1980s)
– Feed Forward Neural Network Language Models (from 2001)
– Recurrent Neural Network Language Models (from 2010)

Cambridge University

Engineering Department
2

ICASSP 2016

N-Gram Language Models

• Only related to previous N − 1 words, ML used to estimate parameter

P (wk|wk−1, ...w1) ≈ P (wk|wk−1, ...wk−N−1)

• Most popular LM over two decades

• Easy to implement

• Drawbacks

– Data sparsity, e.g. |V | = 1000, a 4-gram LM needs 10004 = 1012 parameter
– smoothing is necessary

– Cannot model long term history, only consider last N − 1 words

Cambridge University

Engineering Department
3

ICASSP 2016

Recurrent Neural Network LMs

Input layer

...

...
...

sigmoid

...

linear

softmax

OOV input node

OOS output node

Hidden layer Output layer

wi−1

vi−2

vi−1

vi−1

PRNN(wi|wi−1, vi−2)

• 1-of-K coding for word in input layer

• Each word projected to a low and continuous space – solve data sparsity

• Long term history to be modeled

Cambridge University

Engineering Department
4

ICASSP 2016

Class based Recurrent Neural Network LMs

Input layer

...

...

...

...

sigmoid

linearOOV input node

Hidden layer Output layer

OOS class output node

softmax

softmaxwi−1

vi−2

vi−1

vi−1

P (wi|ci, vi−1)

×

P (ci|vi−1)

PRNN(wi|wi−1, vi−2)

• Use factorized output layer

• Computation reduced significantly

Cambridge University

Engineering Department
5

ICASSP 2016

Existing toolkits for RNNLM

• Toolkits for RNNLM training

– RNNLM toolkit – by Tomas Mikolov
– RWTHLM – by RWTH Aachen University
∗ Trained on CPU
∗ Class based output layer used to reduce computation
∗ Lack of parallel implementation

• Popular Toolkits for deep learning

– Theano – by University of Montreal
– Tensorflow – by Google
– CNTK – by Microsoft
∗ Support RNN implementation using GPU
∗ Designed for general deep learning, not optimized for language model

• Issue: slow to train on large data and model size for RNNLM

Cambridge University

Engineering Department
6

ICASSP 2016

Highlights of CUED-RNNLM

• CUDA

– class and full output layer
– minibatch training with GPU implementation

• Efficient training/evaluation criteria

– standard cross entropy based training
– variance regularization
– noise contrastive estimation

• RNNLM Lattice rescoring integration with HTK 3.5

– n-gram approximation and history vector clustering
– support HTK lattice directly
– conversion tools provided to support Kaldi lattice

Cambridge University

Engineering Department
7

ICASSP 2016

Spliced Sentence Bunch

• Enable RNNLMs to be trained using bunch (i.e. minibatch) mode

• The number of NULL token is minimized

.

.
.
.

.

.
.
.

Stream 0

Stream 1

Stream N-1

Sent 0

Sent 1

Sent N-1

<s> ... </s>

Sent N

Sent 2N-1

<s> ... </s>

<s> ... </s>

Sent N+1

....

....

....

<s> ... </s>

Sent M-N-2

Sent M-N-1

<s> ... </s>

Sent M-1

NULLs

NULLs<s> ... </s>

<s> ... </s>

<s> ... </s>

<s> ... </s>

time

bunch

Input
 words

Target
 words

Cambridge University

Engineering Department
8

ICASSP 2016

Network Configuration Support

• Model structure

– full output layer
– class based output layer
– additional feature in the input layer
– multiple hidden layers

• Specified input and output list

• OOV node in the input layer, OOS node in the output layer

Cambridge University

Engineering Department
9

ICASSP 2016

Train Criteria in CUED-RNNLM

• Cross entropy (CE)

JCE(θ) = −
1

Nw

Nw∑

i=1

lnPRNN(wi|hi)

• Variance regularization (VR)

JV R(θ) = JCE(θ) +
γ

2

1

Nw

Nw∑

i=1

((ln(Zi)− (lnZ))2)

• Noise contrastive estimation (NCE)

JNCE(θ) = −
1

Nw

Nw∑

i=1

(lnP (CRNN
wi

= 1|wi, hi) +

k∑

j=1

lnP (Cn
w̌i,j

= 1|w̌i,j, hi))

Cambridge University

Engineering Department
10

ICASSP 2016

Additional Feature in CUED-RNNLM

• Perplexity calculation

• N-best rescoring

– unnormalized probability to be applied (for VR and NCE trained model)

• Sampling sentences from well-trained RNNLMs

• Appended feature in input layer, e.g. LDA based topic representation

• ReLU for hidden node

– faster convergence and slightly better performance

Cambridge University

Engineering Department
11

ICASSP 2016

Experiments Setup

• Acoustic Model

– AMI Kaldi recipe used
– 78 hours data
– sequence training for DNN
– DNN: 6 hidden layers, each layer with 2048 hidden nodes, 4000 targets
– Lattice generated from Kaldi, and converted to HTK format

• Language Model

– 1M AMI transcription + 13M fisher data
– 49k word decoding vocabulary
– 33k RNNLM input vocabulary, 22k RNNLM output vocabulary
– 512 hidden nodes
– Full output layer RNNLMs (F-RNNLMs) trained by CUED-RNNLM
– Class based RNNLM (C-RNNLMs) trained by Mikolov’s RNNLM Toolkit
– RNNLMs are interpolated with n-gram LM using weight 0.5

Cambridge University

Engineering Department
12

ICASSP 2016

Experiments on 1M AMI transcription
LM Train Re PPL WER
Type Crit score dev eval dev eval

3g - - 93.6 82.8 25.2 25.4

+CRNN CE
lattice

83.3 75.2
24.0 24.1

50 best 23.9 24.1

+FRNN

CE
lattice

81.0 71.7
24.0 23.9

50 best 23.9 24.0

VR
lattice

80.4 71.6
23.9 24.0

50 best 23.9 23.9

NCE
lattice

81.1 72.8
24.1 24.1

50 best 24.0 24.1

• RNNLMs give significant improvement over 3-gram LM

• F-RNNLMs are slightly better than C-RNNLMs

• F-RNNLMs trained by CE, VR and NCE give comparable performance

Cambridge University

Engineering Department
13

ICASSP 2016

Experiments on 14M (AMI+Fisher) data

LM Re PPL WER
Type score dev eval dev eval

3g - 84.5 79.6 24.2 24.7
4g lattice 80.3 76.3 23.7 24.1

+CRNN
lattice

70.5 67.5
22.4 22.5

50 best 22.4 22.6

+FRNN
lattice

69.8 67.0
22.0 22.3

50 best 22.2 22.5

• Similar trend observed on 14M data

• RNNLMs give significant performance improvement over n-gram LM

• F-RNNLMs are slightly better than C-RNNLMs

• Lattice (6g approximation) and N-best rescoring give comparable performance

Cambridge University

Engineering Department
14

ICASSP 2016

Experiments on 14M data using various criteria

• Data shuffled for training of RNNLMs

– give slight performance gain

• N-Best results reported

Train PPL WER
Crit dev eval dev eval

CE 67.5 63.9 22.1 22.4
VR 68.0 64.4 22.1 22.4
NCE 68.5 65.1 22.1 22.4

• F-RNNLMs trained with CE, VR, NCE give comparable performance

Cambridge University

Engineering Department
15

ICASSP 2016

Training and testing speed of RNNLMs

Toolkit
Train Train Test (CPU)
Crit Speed(kw/s) Speed(kw/s)

RNNLM CE 0.45 6.0

CUED-RNNLM
CE 11.5 0.32
VR 11.5 15.3
NCE 20.5 15.3

• CUED-RNNLM is much faster than RNNLM Toolkit from Mikolov

• NCE almost double train speed compared with VR and CE

• VR and NCE are much faster than CE due to unnormalized probability in test

Cambridge University

Engineering Department
16

ICASSP 2016

Train Speed (kw/s) against number of hidden nodes

Toolkit
Hidden node

128 256 512 1024 2048

RNNLM 4.1 1.7 0.45 0.095 0.012
CUED-RNNLM 19.8 14.2 11.5 6.6 3.7

• RNNLM Toolkit slow down quickly with the increase of hidden layer

• CUED-RNNLM is more suitable for training of RNNLM with large model size

Cambridge University

Engineering Department
17

ICASSP 2016

Toolkit Download and Future Work

• Available at http://mi.eng.cam.ac.uk/projects/cued-rnnlm/

– Source code (implemented by C++)
– Document
– Lattice conversion tool
– AMI recipe

• License: BSD license

• Future work

– CTS recipe
– LSTM based RNNLM
– Bidirectional RNNLM

Cambridge University

Engineering Department
18

ICASSP 2016

Thanks !
Q & A

Cambridge University

Engineering Department
19

