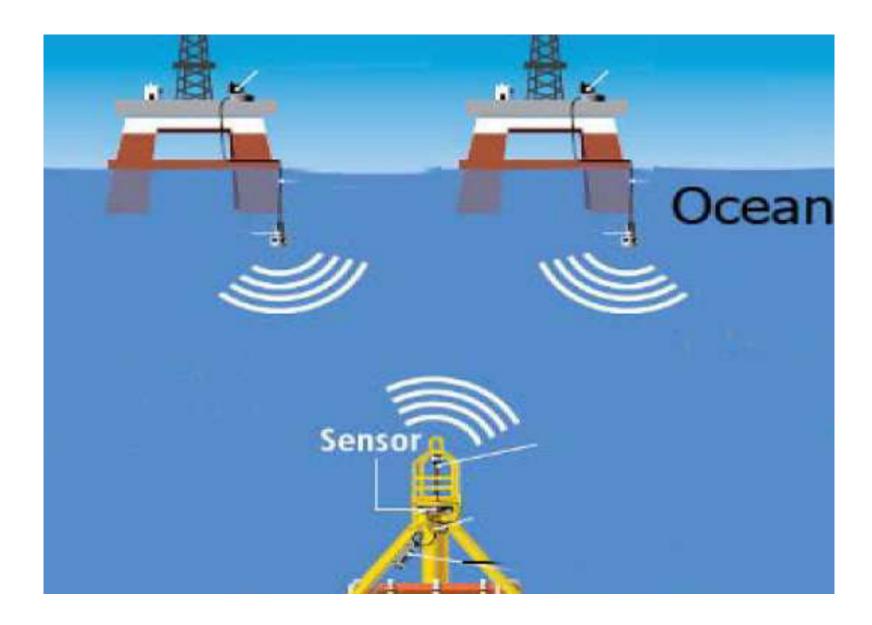
RSS-Based Sensor Localization in Underwater Acoustic Sensor Networks Tao Xu¹, Yongchang Hu², Bingbing Zhang³ and Geert Leus²

Objectives

• Underwater acoustic (UWA) sensor localization approaches • received signal strength (RSS) measurement

Introduction

- Location-awareness is important task for underwater acoustic sensor networks.
- Measurements for localization:
- **TOA** and **TDOA**: Synchronization is expensive, unpredictable velocity;
- **AOA**: no line-of-sight (LOS) ;
- $\checkmark \mathbf{RSS}$: practical simplicity of implementation;
- However, **complicated** underwater channels and hence very **few** attention:
- For certain water depths, the **Urick** propagation model shall be considered;
- The transmission loss: $\psi_{\rm TL}(f, d) = 10\beta \log_{10} d + \alpha^{(f)} d + \xi^{(f, d)}$
- β is the path-loss exponent (PLE);
- $\alpha^{(f)}$ is the absorption coefficient (dB/km) and obtained by Thorp's empirical formula $0.11\frac{f^2}{1+f^2} + 44\frac{f^2}{4100+f^2} + 2.75 \times 10^{-4}f^2 + 0.003;$
- $\xi^{(f,d)}$ contains residual factors;
- The RSS measurement: $P_i^{(f)} = P_0^{(f)} - 10\beta \log_{10} \frac{d_i}{d_0} - \alpha^{(f)} (d_i - d_0) + n_i^{(f)},$
- $d_i = \|\mathbf{x} \mathbf{s}_i\|_2 > 0$ and d_0 is the reference distance, normally $d_0 = 1 m$
- $P_0^{(f)}$ is measured power at d_0 , i.e., the transmit power.
- $n_i^{(f)} = \xi^{(f,0)} \xi^{(f,d)}$ is the *Gaussian* distributed measurement noise;



¹Tsinghua University, China, & Tianjin 712 Communication Broadcasting Co. Ltd, ²Circuits and Systems (CAS) group, Delft University of Technology, the Netherlands ³Fac. EE, National University of Defence Technology, 410073, Changsha, China

Optimization Problems

Non-convex but Maximum likelihood (ML) problem:

$$\operatorname{argmin}_{\mathbf{x}\in\mathbb{R}^{M}}\sum_{i}^{N} (P_{i}^{(f)} + 10\beta \log_{10}d_{i} + \alpha^{(f)}d_{i})^{2}$$

Convex problem:

$$\min_{\mathbf{x}\in\mathcal{R}^{M}}\sum_{i}^{N}\left|\lambda_{i}^{(f_{k})}d_{i}^{2}+\gamma^{(f)}d_{i}-1\right|$$

 $\gamma_i^{(f)} = 10^{\frac{P_i^{(f)} - P_0^{(f)} - \alpha^{(f)}}{10\beta}} \text{ and } \lambda_i^{(f)} = \frac{\gamma_i^{(f)} \alpha^{(f)} \ln 10}{10\beta}$

Important Result

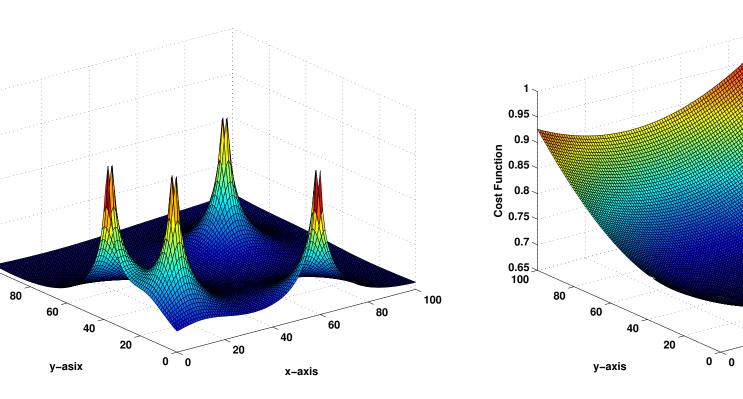
• We introduce a new smooth optimization model for RSS-based acoustic localization. • We propose a semi-definite programming (SDP) approach using the RSS measurement. 3 Another SDP approach is also developed using the FDRSS measurement.

RSS-based Approach

First introduce two new variables:	• Tł
• First introduce two new variables: • $\mathbf{D} \doteq \begin{bmatrix} \mathbf{d} \\ 1 \end{bmatrix} \begin{bmatrix} \mathbf{d}^T & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{d}\mathbf{d}^T & \mathbf{d} \\ \mathbf{d}^T & 1 \end{bmatrix};$	$(\mathbf{F} P_i^{(i)})$
• $\mathbf{X} \doteq \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix} \begin{bmatrix} \mathbf{x}^T & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{x} \mathbf{x}^T & \mathbf{x} \\ \mathbf{x}^T & 1 \end{bmatrix};$	• $P_i^{(i)}$
• d collects all d_i , $d_i^2 = [\mathbf{D}]_{i,i}$ and $d_i = [\mathbf{D}]_{N+1,i}$;	• $\alpha^{(2)}$
• $[\mathbf{D}]_{i,i} = [\mathbf{x}^T \ 1] \begin{bmatrix} \mathbf{I}^T & -\mathbf{s}_i \\ -\mathbf{s}_i^T \ \mathbf{s}_i^T \mathbf{s}_i \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix} = \text{Trace} [\mathbf{X}\mathbf{S}_i]$	• Ap $\alpha^{(2)}$
• Then the semi-definite relaxation (SDR) dumps	$\eta_i^{(arDelta)}$
the rank constrains $\operatorname{Rank}(\mathbf{X}) = \operatorname{Rank}(\mathbf{D}) = 1$.	- Sin
• Finally, introduce the slack variables t_i and solve	
the semi-definite programming (SDP):	m D
N	
$\min_{\mathbf{D},\mathbf{X},t_i}\sum_i t_i,$	s.t
s.t. $-t_i < \lambda_i^{(f)} [\mathbf{D}]_{i,i} + \gamma^{(f)} [\mathbf{D}]_{N+1,i} - 1 < t_i$	
$[\mathbf{D}]_{i,i} = \operatorname{Trace}[\mathbf{XS}_i]$	
$\mathbf{X} \succeq 0, \ \mathbf{D} \succeq 0$	
$[\mathbf{X}]_{M+1,M+1} = [\mathbf{D}]_{N+1,N+1} = 1$	

CRLB

In \mathbb{R}^2 , 4 anchors located at (59, 26), (35, 5),(10, 40) and (26, 1).



FDRSS-based Approach

The frequency differential RSS FDRSS) measurement:

pply least squares (LS) criterion on $\alpha^{(\Delta)}d_i - \eta_i^{(\Delta)} = n_i^{(\Delta)} \text{ with }$ $\eta_i^{(\Delta)} = P_0^{(\Delta)} + \alpha^{(\Delta)} - P_i^{(\Delta)}$

imilarly, solve the SDP:

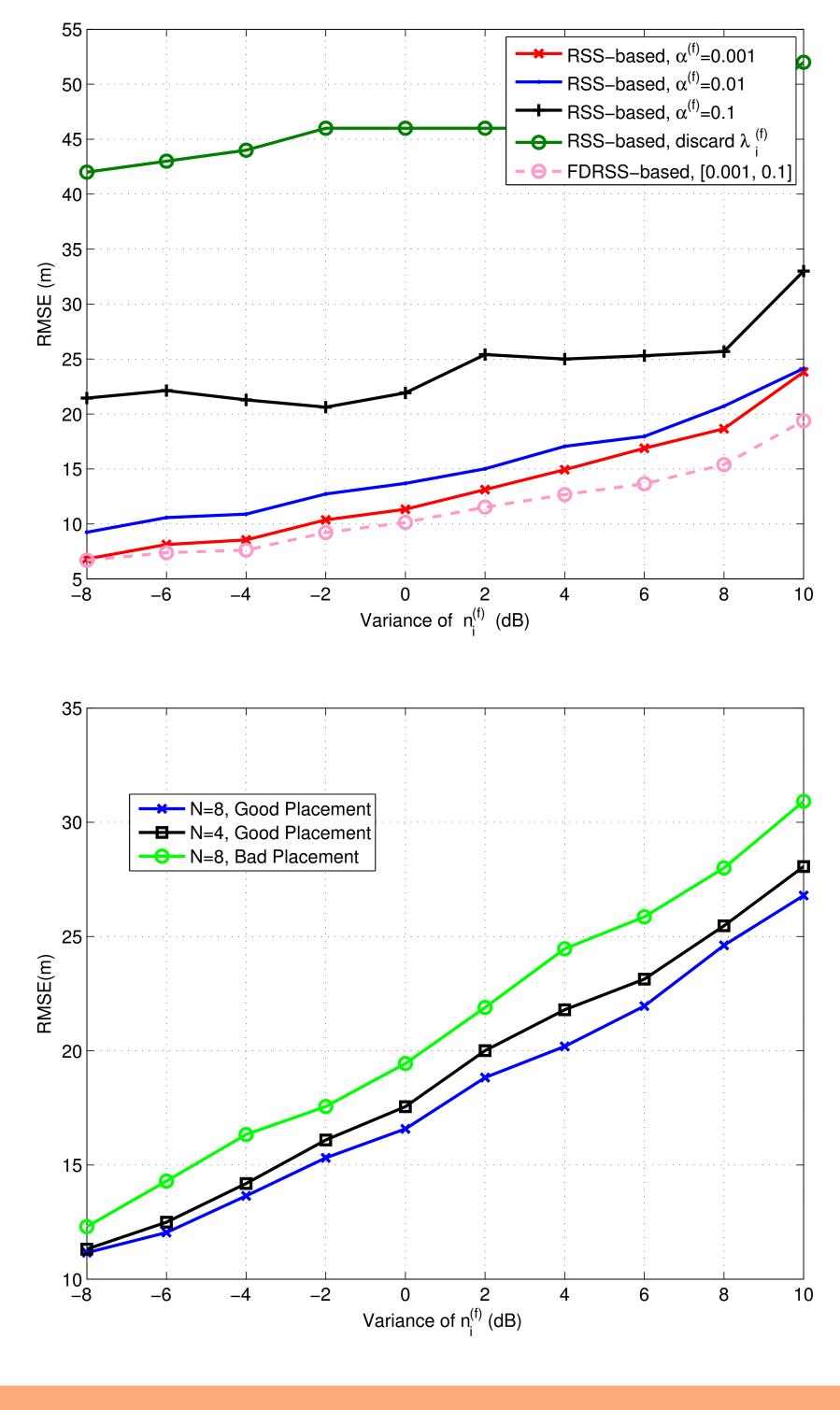
$$\min_{\mathbf{D}, \mathbf{X}} \sum_{i}^{N} \left(\alpha^{(\Delta)^{2}} [\mathbf{D}]_{i,i} - 2\alpha^{(\Delta)} \eta_{i}^{(\Delta)} [\mathbf{D}]_{N+1,i} + \eta_{i}^{(\Delta)^{2}} \right),$$

$$\text{t.} \quad [\mathbf{D}]_{i,i} = \text{Trace} [\mathbf{XS}_{i}]$$

$$\mathbf{X} \succeq \mathbf{0}, \ \mathbf{D} \succeq \mathbf{0}$$

$$[\mathbf{X}]_{M+1,M+1} = [\mathbf{D}]_{N+1,N+1} = 1$$

to solve SDPs.



Simulation Results

10 anchors is randomly deployed; $\beta = 2$; use CVX

Contact Emails:

 xutao_2001640@nudt.edu.cn (Tao Xu) hycforever2000@gmail.com (Yongchang Hu)

