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Why learn from private data?

• Much of private/sensitive data is being digitized

• Using/reusing data - learn about populations

• Free and open sharing - ethical, legal, and technological obstacles

Rutgers Imtiaz & Sarwate
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Principal Component Analysis
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The PCA problem

Data matrix: X = [x1 x2 . . . xn], samples are in columns
Second-moment matrix A = XX>.
We can decompose A as

A = V ΛV >

where Λ = diag(λ1, λ2, . . . , λn) and λ1 ≥ λ2 ≥ · · · ≥ λn

Rutgers Imtiaz & Sarwate
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The PCA problem

The rank-k approximation of A:

Ak = VkΛkV
>
k

The top-k PCA subspace is the span of the corresponding columns of
V .
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Why we need privacy in PCA?
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Changing one sample can significantly change the principal direction
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Differential privacy: a definition

[Dwork et al. 2006] An algorithm A is (ε, δ)-differentially private if for
any set of outputs F , and all (D,D′) differing in a single point,

P (A(D) ∈ F) ≤ exp(ε) · P
(
A(D′) ∈ F

)
+ δ

Rutgers Imtiaz & Sarwate
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Differential privacy: hypothesis testing

log
P (A(D) ∈ F)

P (A(D′) ∈ F)
≤ ε

Rutgers Imtiaz & Sarwate
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Privacy-utility tradeoff

Tradeoff between privacy and utility. With more data:

• Stronger evidence for structure → more accuracy/utility

• Less dependence on individuals → less privacy risk

• How much data do we need?

• What is the tradeoff in practice?

Rutgers Imtiaz & Sarwate
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Differentially-private PCA Algorithms

Several algorithms are available:

• (ε, δ): Analyze Gauss [Dwork et al. 2014]

• (ε, δ): Private Power Method [Hardt et al. 2014]

• (ε, 0): PPCA [Chaudhuri et. al. 2013, McSherry et. al. 2007]

• (ε, 0): Proposed Symmetric Noise (SN) algorithm

• (ε, δ): Wishart noise [Sheffet 2015] (linear regression)

• (ε, 0): Wishart noise [Jiang 2016] (in a parallel effort)

AG PPM PPCA SN

Estimates Â 3 7 7 3

Â PSD 7 – – 3

δ > 0 3 3 7 7

δ = 0 7 3 3 3

Table: Comparison of Algorithms

Rutgers Imtiaz & Sarwate
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Proposed SN algorithm
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Proposed SN Algorithm: Wishart noise addition

Input: d× n data matrix X, privacy parameter ε, dimension k.

1 Compute A = XX>.

2 Generate d× p matrix Z = [z1, z2, . . . , zp] where zi ∼ N (0, 1
2εI)

and p = d+ 1.

Output: Â = A+ ZZ>. Set V̂k using PCA on Â.

Remark: Adding wishart noise preserves the PSD structure of A, which
is not the case for AG [Dwork et al. 2014]

Rutgers Imtiaz & Sarwate
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Analysis of SN algorithm
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Privacy of SN Algorithm

• zi are iid ∼ N (0, 1
2εId) where {zi : i = 1, 2, . . . , d+ 1}

• Z = [z1, z2, . . . , zp]

• The positive semidefinite E = ZZ> is distributed ∼ Wishart
Wd(Σ, p) where Σ = 1

2εId and p = d+ 1

fE(E) ∝ (det(E))
p−d−1

2 exp

(
−1

2
tr
(
Σ−1E

))
∝ exp (−ε tr(E))

Rutgers Imtiaz & Sarwate
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Privacy of SN Algorithm

• Two neighboring databases with A and A′, an output Y from SN.

• Data samples satisfy ‖xi‖2 ≤ 1 and therefore, ‖A−A′‖2 ≤ 1.

fE(Y −A)

fE(Y −A′) =
exp (−ε tr(Y −A))

exp (−ε tr(Y −A′))
≤ exp (ε) .

Rutgers Imtiaz & Sarwate
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Empirical performance of SN algorithm
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What do we mean by performance?

The performance can be different in different applications:

• captured energy of A in the private subspace

• classification performance of projected data on V̂k

• difference between the A and Â

Percentage of captured energy w.r.t SVD =
tr(V̂ >k AV̂k)

tr(V >k AVk)
× 100

Rutgers Imtiaz & Sarwate
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Datasets used

• Synthetic data set (d = 100, n = 60000, k = 10) was generated
with a pre-determined covariance matrix

• The Covertype dataset (d = 54, k = 10) contains Forest
CoverTypes - was collected by Department of Forest Sciences of
Colorado State University. Has 5,81,012 samples.

• The MNIST (d = 784, k = 50) - database of handwritten digits.
Has 60,000 training and 10,000 testing samples

Rutgers Imtiaz & Sarwate



ICASSP 2016 > Empirical performance 20 / 26

Dependence on privacy parameter ε
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(a) Synthetic data (with δ=0.1)
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(b) COVTYPE data (with δ=0.02)
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• AG, PPM and SN - standard deviation of noise is inversely
proportional to ε

• Smaller ε means more noise and lower privacy risk.
• For PPCA, an increase in ε means skewing the probability density

function more towards the optimal subspace.
Rutgers Imtiaz & Sarwate
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Dependence on number of samples n
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(a) Synthetic data (with ǫ=0.1, δ=0.02)
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(b) COVTYPE data (with ǫ=0.1, δ=0.02)
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• Intuitively, it should be easier to guarantee smaller privacy risk ε
and higher utility q(·) when the number of samples is large.
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Classification

• We projected the d-dimensional data samples onto the private
k-dimensional subspace V̂k.

Table: Percentage error in classification

Synthetic COVTYPE MNIST
70% 50% 70% 50% 70% 50%

SVD 6.63 6.34 0.08 0.08 0.61 0.32
AG 6.58 6.32 1.08 0.85 2.72 2.38
PPM 10.48 10.06 2.05 1.26 2.67 2.48
PPCA 7.43 7.21 5.21 4.85 3.16 2.91
SN 7.99 7.48 0.05 0.05 2.22 2.09
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Some concluding remarks
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Conclusions

• The AG and the SN - best performance among (ε, δ) and
(ε, 0)-private methods, respectively.

• In some regimes SN achieved as much utility as AG, even though
SN provides stricter privacy guarantee.

• When there’s a large eigengap - SN provided a very good approx.
to Vk(A)

• Also, SN provided a very good approx. to Ak

• We found, [Sheffet 2015] and [Jiang 2016] outperform PPM and
PPCA, but did not have empirical utility better than that of SN.

• Results suggest: the asymptotic guarantees for
differentially-private algorithms may not always reflect their
empirical performance

Rutgers Imtiaz & Sarwate
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Future Works

• Application in distributed PCA and thus, fMRI analysis

• Can we add less noise?

• When data dimension is large, can we compute Vk(A) in any
other way?

Rutgers Imtiaz & Sarwate
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Thank you!
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