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Introduction

The Main Contribution

@ Question: How to perform principal component analysis over
a massively distributed data set?

e Our contribution: Design and analysis an efficient nonconvex
algorithm.
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Introduction

Principal Component Analysis(PCA)

o PCA aims to reduce the dimension of multi-variate data set.
@ For given data set D, the solution of:
Dx|[2 t 2 < 1
max D[, s.t. x[3 < (1)

is called first loading vector and the vector Dx is called the
first PC [Mackey (2008)] .

o ||Dx||3 represents the explained variance of the first PC.
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Introduction

Sparse PCA

e Deficiency of PCA: Most of the PCs’ coefficients are
non-zero, making the resulting solutions difficult to interpret.

e How to address this issue? Using Sparse PCA (SPCA):
max ||Dx||3 — Ar(x), s.t.|x||3 <1 (2)
X

where r(x) is a sparsity-promoting, and A > 0 controlling the
sparsity. [Kwak (2008)].

@ r(x) can be : ||x]|o, or its approximations such as ||x||;
(convex), > log(e + |xi|) (non-convex).
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Introduction

Literature in SPCA

o [D'Aspremont et al (2007)]: Proposed a semi-definite
relaxation of a rank constrained problem (DSPCA).

@ [Shen et al (2008)] : Used the connection of PCA with SVD
and solved a low rank matrix approximation to extract the PCs
(sPCA-rSVD).

@ [Journee et al (2010)]: Formulated SPCA as maximization of a
convex function on a compact set (G-Power).

@ [Zhao et al (2015)]: Proposed a block coordinate descent
(BCD) method for solving SPCA (BCD-SPCA).
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Introduction

Benefit of Distributed Computing

@ Question: Why we need distributed optimization?

(1) Data are collected/stored in a distributed network.
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Introduction

Benefit of Distributed Computing

(2) Memory Limitation
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Introduction

Benefit of Distributed Computing

(3) Privacy Issue
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Introduction

Benefit of Distributed Computing

(4) Parallel Clusters
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Distributed SPCA Formulations

@ Distributed SPCA Formulations
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Distributed SPCA Formulations

Distribution Across the Rows

@ Splitting the rows of D € R"*P into N sub-matrix:

sjuawnloqg

@ SPCA problem can be reformulated:
N
max ZHDiXH% —Ar(x), st x5 <1 (3)
i=1
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Distributed SPCA Formulations

Distribution Across the Columns

@ Splitting the columns of D € R"*P into M sub-matrix:

| Variables ‘

o
n
sjuawnloq

@ SPCA problem can be reformulated:

2
max —Mr(x), st |x|3 <1, (4)

M
> A
i—1

@ Both formulations are non-convex optimization problem.
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Proposed ADMM Algorithm

© Proposed ADMM Algorithm
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Proposed ADMM Algorithm

ADMM setup when rows are distributed

@ Define new variable z:

min S, —[1Dixi[3 + Ar(2)
S.t. HZHS]_’ Xi:Z,i:]-,"'N;

()

e Hong et al.(2014) showed that the ADMM converges to the
set of stationary solutions when r(x) is convex.

@ In our case r(z) is also allowed to be non-convex
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Proposed ADMM Algorithm

ADMM setup when rows are distributed

@ Augmented Lagrangian function

N
Lo(x,z;y) ZHDfoer)\f( )+ (xi—z )
i=1

+ Z I — 2|17

y = {y; € RP}N  is the set of dual variables; p; > 0 is
penalization parameter.

e ADMM Algorithm: First, minimizing L,(-) with respect to z,

then with respect to {x;}, followed by an approximate dual
ascent update for {y;} [Boyd et al (2011)].
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Proposed ADMM Algorithm

Non-Convex Regulizer

e How to deal with non-convex regulizer? Applying convex
approximation technique called the block successive
upper-bound minimization (BSUM) [Razaviyayn-Hong-Luo
2013].

o At iteration t, regularizer r(z) is replaced with a convex
upper-bound approximation, u(z, v) such that:

Q u(v,v)=r(v) U x)
u'(z,v;d)|=, = r'(v;d)
u(z,v) > r(v), for all z,v € X.

© 00

u(z, v) is continuous Vz,v € X.

xt
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Proposed ADMM Algorithm

Non-Convex Regulizer

@ For example, upper-bounds for the LSP and M-LSP:
© The nonconvex LSP, r(x) = >°7_; log(ej + |x;]).

@ The modified LSP (M-LSP), r(x) = log(e + || x|[1).

u(x, xt) = 1 5 (\Xj\ - !Xf!) (LSP)
o Ulxlls = lIxflln) - (M-LSP)
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Proposed ADMM Algorithm

ADMM algorithm when rows are distributed

Algorithm 1. ADMM for SPCA
Distribute the data into to different nodes.
Initialize the variables.
At iteration t + 1, do:
S1: The central node updates z:

N
2 = argmin Au(z,2') + 3 pi/2lx — 2+ v /il

llzlI3<1 i=1

S2: Each node i updates x; in parallel:

t+1

X1 = arg min — ||D,-x,-||§ +pi/2||xi — z +)/,-t/pi||2.

S3: Each node i updates the dual variables in parallel:

t+ t+1

it =yl et = 2.
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Proposed ADMM Algorithm

ADMM setup when columns are distributed

@ Splitting the columns:

| Variables

o
n
sjuawnloq

@ Introducing set of variables {z;}

[ty 3

s.t. Ix[[? <1, Axi=2z, i=12---M.
@ Augmented Lagranglan:

Lo(x,z;y) :—HZZ,Hz—I-)\I’ +Zﬁ'HAXI—Zi—Yi/5iH2-
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Proposed ADMM Algorithm

ADMM algorithm when columns are distributed

Distribute the data A;'s to different nodes.
At iteration t +1
S1: Each node i updates x; in parallel:

X = arg min Aui(x;, x7) Hlxi — x|

+ ﬁi(AfT(AiX;t -z +yi/Bi),xi — i)

S2: Each node sends ¢/t! = ||x'"!||3 to the central node.
S3: Central node broadcasts c'** = max{3°V, ¢/**,1}.

S4: Each node computes in parallel: x™ = X*!/y/ct+t,
S5: The central node updates z:

2" = argmin 7HZZ,H2+Z['3,/2HAX —zi+yH/Bi

i=1 i=1

S6: Each node i updates the dual variables in parallel:

.yit+1 = )/it + ﬂi(AiXitJrl - ZiH—l)-
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Proposed ADMM Algorithm

Convergence Analysis

We have the following convergence result for Algorithm 1-2:
(1) For Algorithm 1: If p; > 4||D;' D;||» for all i, then we have:

lim [|xftt -zt =0, i=1,---,N.
t—00
Further, the algorithm converges to the set of stationary
solutions of SPCA.
(2) For Algorithm 2: If §; > 4M for all i, then we have:
M.

Y

lim HA,-Xf‘*'1 — szH =0,i=1,---
t—o00

Further, the algorithm converges to the set of stationary
solutions of SPCA.
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Numerical Results

@ Numerical Results
@ Performance on Centralized Data
@ Performance on Distributed Data
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Performance on Centralized Data

Numerical Results on Pitprops data set

23 /27

o Centralized version of algorithm (N = M = 1).

Numerical Results
.

e Pitprops data consists of 180 observations and 13 variables.

Method Cardinality EV

DSPCA [d’Aspremont et al (2007)] 18 79.18
sPCA-rSVDy, [Shen et al (2008)] 18 80.85
sPCA-rSVDy, [Shen et al (2008)] 18 80.40
Gpower,, [Journee et al (2010)] 18 80.64
Gpower,, [Journee et al (2010)] 19 81.11
BCD-SPCAy, [Zhao et al (2015)] 18 80.47
BCD-SPCAy, [Zhao et al (2015)] 18 81.14
ADMMy, [Our Method] 18 82.93
ADMMwyLsp [OUI’ Method] 18 83.48
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Numerical Results
®000

Performance on Distributed Data

Splitting The Rows

o We set n = 1,000,000, p = 2000.

e Randomly generated sparse matrix ( 95% of elements are
zero), a randomly generated dense matrix.

@ We split this matrix across the rows into N € {16,32,64}
subsets.

@ The explained variances in all cases are about 0.064.

Cardinality Time (Sec) Iteration

N | Sparse | Dense | Sparse | Dense | Sparse | Dense
16 | 1585 1580 40.1 453 2000 2250
32 | 1574 1574 439 1175 2144 3150
64 | 1585 1572 110.1 397.7 | 2489 3868
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Numerical Results
ce00

Performance on Distributed Data

Splitting The Columns

@ Set n =2000 and p = 100, 000.
o Let M € {1,2,4,8,16,32,64}.
e Apply Algorithm 2, using the M-LSP regularizer.

Cardinality Time (Sec) Iteration
M | Sparse | Dense | Sparse | Dense | Sparse | Dense
1 | 11960 | 11965 | 59.90 249.09 | 58 208
2 | 11960 | 11964 | 43.22 121.19 | 88 259
4 | 11962 | 11965 | 40.19 80.39 | 168 321
8 | 11963 | 11963 | 30.58 5477 | 222 392
16 | 11962 11965 | 23.90 41.61 290 469
32| 11962 | 11964 | 13.85 25.22 | 328 548
64 | 11961 11964 | 19.75 31.98 448 611
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Numerical Results
coeo

Performance on Distributed Data

Conclusion

@ We propose non-convex ADMM algorithms to solve
distributed SPCA problems.

@ Data matrix can be distributed across the rows as well as
columns.

@ Our methods deal with non-convex regulizers to promote
sparsity.
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Numerical Results
ocooe

Performance on Distributed Data

Future Works

o Extend the star network to an arbitrary one with non-convex
functions.

@ Try to find conditions under which we can reach the global
optimal solution.

@ Apply the same way to prove the convergence of ADMM for
More NoNn-convex Cases.
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