Nonconvex ADMM for Distributed Sparse PCA

Davood Hajienzhad Joint work Mingyi Hong

Iowa State University

Presented at GlobalSIP 2015

The Main Contribution

• Question: How to perform principal component analysis over a massively distributed data set?

• Our contribution: Design and analysis an efficient nonconvex algorithm.

Outline

- Introduction
- 2 Distributed SPCA Formulations
- Proposed ADMM Algorithm
- Mumerical Results
 - Performance on Centralized Data
 - Performance on Distributed Data

Principal Component Analysis(PCA)

- PCA aims to reduce the dimension of multi-variate data set.
- For given data set D, the solution of:

$$\max_{x} \|Dx\|_{2}^{2}, \quad \text{s.t. } \|x\|_{2}^{2} \le 1$$
 (1)

is called first loading vector and the vector Dx is called the first PC [Mackey (2008)].

• $||Dx||_2^2$ represents the explained variance of the first PC.

Sparse PCA

- **Deficiency of PCA**: Most of the PCs' coefficients are non-zero, making the resulting solutions difficult to interpret.
- How to address this issue? Using Sparse PCA (SPCA):

$$\max_{x} \|Dx\|_{2}^{2} - \lambda r(x), \quad \text{s.t. } \|x\|_{2}^{2} \le 1$$
 (2)

where r(x) is a sparsity-promoting, and $\lambda > 0$ controlling the sparsity. [Kwak (2008)].

• r(x) can be : $||x||_0$, or its approximations such as $||x||_1$ (convex), $\sum_i \log(\epsilon + |x_i|)$ (non-convex).

Literature in SPCA

- [D'Aspremont et al (2007)]: Proposed a semi-definite relaxation of a rank constrained problem (DSPCA).
- [Shen et al (2008)]: Used the connection of PCA with SVD and solved a low rank matrix approximation to extract the PCs (sPCA-rSVD).
- [Journee et al (2010)]: Formulated SPCA as maximization of a convex function on a compact set (G-Power).
- [Zhao et al (2015)]: Proposed a block coordinate descent (BCD) method for solving SPCA (BCD-SPCA).

- Question: Why we need distributed optimization?
 - (1) Data are collected/stored in a distributed network.

(2) Memory Limitation

(3) Privacy Issue

(4) Parallel Clusters

- Introduction
- Distributed SPCA Formulations
- Proposed ADMM Algorithm
- 4 Numerical Results
 - Performance on Centralized Data
 - Performance on Distributed Data

Distribution Across the Rows

• Splitting the rows of $D \in \mathbb{R}^{n \times p}$ into N sub-matrix:

• SPCA problem can be reformulated:

$$\max_{x} \sum_{i=1}^{N} \|D_{i}x\|_{2}^{2} - \lambda r(x), \quad \text{s.t. } \|x\|_{2}^{2} \le 1.$$
 (3)

Distribution Across the Columns

• Splitting the columns of $D \in \mathbb{R}^{n \times p}$ into M sub-matrix:

SPCA problem can be reformulated:

$$\max \left\| \sum_{i=1}^{M} A_i x_i \right\|^2 - \lambda r(x), \quad \text{s.t.} \quad \|x\|_2^2 \le 1, \tag{4}$$

• Both formulations are non-convex optimization problem.

- Introduction
- Distributed SPCA Formulations
- Proposed ADMM Algorithm
- 4 Numerical Results
 - Performance on Centralized Data
 - Performance on Distributed Data

ADMM setup when rows are distributed

Define new variable z:

$$\min_{\substack{x,z \\ \text{s.t.}}} \quad \sum_{i=1}^{N} - \|D_i x_i\|_2^2 + \lambda r(z)
\text{s.t.} \quad \|z\| \le 1, \ x_i = z, \ i = 1, \dots N;$$
(5)

- Hong et al. (2014) showed that the ADMM converges to the set of stationary solutions when r(x) is convex.
- In our case r(z) is also allowed to be non-convex

ADMM setup when rows are distributed

Augmented Lagrangian function

$$L_{\rho}(x, z; y) = -\sum_{i=1}^{N} \|D_{i}x_{i}\|_{2}^{2} + \lambda r(z) + \sum_{i=1}^{N} \langle x_{i} - z, y_{i} \rangle$$
$$+ \sum_{i=1}^{N} \frac{\rho_{i}}{2} \|x_{i} - z\|^{2}$$

 $y := \{y_i \in \mathbb{R}^p\}_{i=1}^N$ is the set of dual variables; $\rho_i > 0$ is penalization parameter.

• ADMM Algorithm: First, minimizing $L_{\rho}(\cdot)$ with respect to z, then with respect to $\{x_i\}$, followed by an approximate dual ascent update for $\{y_i\}$ [Boyd et al (2011)].

Non-Convex Regulizer

- How to deal with non-convex regulizer? Applying convex approximation technique called the block successive upper-bound minimization (BSUM) [Razaviyayn-Hong-Luo 2013].
- At iteration t, regularizer r(z) is replaced with a convex upper-bound approximation, u(z, v) such that:

$$u(v,v) = r(v)$$

2
$$u'(z, v; d)|_{z=v} = r'(v; d)$$

$$u(z, v) \ge r(v)$$
, for all $z, v \in X$.

$$u(z, v)$$
 is continuous $\forall z, v \in X$.

Non-Convex Regulizer

- For example, upper-bounds for the LSP and M-LSP:
 - **1** The nonconvex LSP, $r(x) = \sum_{j=1}^{p} \log(\epsilon_j + |x_j|)$.
 - ② The modified LSP (M-LSP), $r(x) = \log(\epsilon + ||x||_1)$.

$$u(x, x^{t}) = \begin{cases} \sum_{j=1}^{p} \frac{1}{\epsilon_{j} + |x_{j}^{t}|} \left(|x_{j}| - |x_{j}^{t}| \right) & \text{(LSP)} \\ \frac{1}{\epsilon + \|x^{t}\|_{1}} \left(\|x\|_{1} - \|x^{t}\|_{1} \right) & \text{(M-LSP)} \end{cases}.$$

ADMM algorithm when rows are distributed

Algorithm 1. ADMM for SPCA

Distribute the data into to different nodes. Initialize the variables.

At iteration t + 1, do:

S1: The **central node** updates z:

$$\mathbf{z}^{t+1} = \operatorname*{arg\;min}_{\|\mathbf{z}\|_2^2 \leq 1} \lambda \mathbf{u}(\mathbf{z}, \mathbf{z}^t) + \sum_{i=1}^N \rho_i / 2 \|\mathbf{x}_i^t - \mathbf{z} + \mathbf{y}_i^t / \rho_i\|^2.$$

S2: Each node i updates x_i in parallel:

$$x_i^{t+1} = \arg\min_{x_i} - \|D_i x_i\|_2^2 + \rho_i/2\|x_i - z^{t+1} + y_i^t/\rho_i\|^2.$$

S3: Each node *i* updates the dual variables in parallel:

$$\mathbf{y}_{i}^{t+1} = \mathbf{y}_{i}^{t} + \rho_{i}(\mathbf{x}_{i}^{t+1} - \mathbf{z}^{t+1}).$$

ADMM setup when columns are distributed

Splitting the columns:

• Introducing set of variables $\{z_i\}$

min
$$-\left\|\sum_{i=1}^{M} z_i\right\|^2 + \lambda r(x)$$

s.t. $\|x\|^2 \le 1$, $A_i x_i = z_i$, $i = 1, 2, \dots M$.

Augmented Lagrangian:

$$L_{\beta}(x,z;y) = -\|\sum_{i=1}^{M} z_i\|_{2}^{2} + \lambda r(x) + \sum_{i=1}^{M} \frac{\beta_i}{2} \|A_i x_i - z_i - y_i/\beta_i\|^{2}.$$

ADMM algorithm when columns are distributed

Distribute the data A_i 's to different nodes.

At iteration t+1

S1: Each node i updates x_i in parallel:

$$\widetilde{\mathbf{x}}_{i}^{t+1} = \underset{\mathbf{x}_{i}}{\arg\min} \ \lambda u_{i}(\mathbf{x}_{i}, \mathbf{x}_{i}^{t}) + \frac{L_{i}\beta_{i}}{2} \|\mathbf{x}_{i} - \mathbf{x}_{i}^{t}\|^{2}$$
$$+ \beta_{i} \langle A_{i}^{T} (A_{i}\mathbf{x}_{i}^{t} - \mathbf{z}_{i}^{t} + \mathbf{y}_{i}^{t}/\beta_{i}), \mathbf{x}_{i} - \mathbf{x}_{i}^{t} \rangle$$

- S2: Each node sends $c_i^{t+1} = \|\widetilde{x}_i^{t+1}\|_2^2$ to the central node.
- S3: Central node broadcasts $c^{t+1} = \max\{\sum_{i=1}^{M} c_i^{t+1}, 1\}$.
- S4: Each node computes in parallel: $x_i^{t+1} = \widetilde{x}_i^{t+1} / \sqrt{c^{t+1}}$.
- S5: The central node updates z:

$$z^{t+1} = \arg\min_{z} - \|\sum_{i=1}^{M} z_i\|_2^2 + \sum_{i=1}^{M} \beta_i / 2 \|A_i x_i^{t+1} - z_i + y_i^t / \beta_i\|^2.$$

S6: Each node *i* updates the dual variables in **parallel**:

$$\mathbf{v}_{i}^{t+1} = \mathbf{v}_{i}^{t} + \beta_{i}(A_{i}\mathbf{x}_{i}^{t+1} - \mathbf{z}_{i}^{t+1}).$$

Convergence Analysis

Theorem

We have the following convergence result for Algorithm 1-2:

(1) For Algorithm 1: If $\rho_i \ge 4 \|D_i^\top D_i\|_2$ for all i, then we have:

$$\lim_{t\to\infty} ||x_i^{t+1} - z^{t+1}|| = 0, \ i = 1, \cdots, N.$$

Further, the algorithm converges to the set of stationary solutions of SPCA.

(2) For Algorithm 2: If $\beta_i \geq 4M$ for all i, then we have:

$$\lim_{t\to\infty} ||A_i x_i^{t+1} - z_i^{t+1}|| = 0, \ i = 1, \cdots, M.$$

Further, the algorithm converges to the set of stationary solutions of SPCA.

- Introduction
- Distributed SPCA Formulations
- Proposed ADMM Algorithm
- 4 Numerical Results
 - Performance on Centralized Data
 - Performance on Distributed Data

Performance on Centralized Data

Numerical Results on Pitprops data set

- Centralized version of algorithm (N = M = 1).
- Pitprops data consists of 180 observations and 13 variables.

Method	Cardinality	EV
DSPCA [d'Aspremont et al (2007)]	18	79.18
$sPCA-rSVD_{\ell_0}$ [Shen et al (2008)]	18	80.85
$sPCA-rSVD_{\ell_1}$ [Shen et al (2008)]	18	80.40
Gpower _{ℓ_0} [Journee et al (2010)]	18	80.64
Gpower _{ℓ_1} [Journee et al (2010)]	19	81.11
BCD-SPCA _{ℓ_0} [Zhao et al (2015)]	18	80.47
BCD-SPCA $_{\ell_1}$ [Zhao et al (2015)]	18	81.14
$ADMM_{\ell_1}$ [Our Method]	18	82.93
ADMM _{MLSP} [Our Method]	18	83.48

Splitting The Rows

- We set n = 1,000,000, p = 2000.
- Randomly generated sparse matrix (95% of elements are zero), a randomly generated dense matrix.
- We split this matrix across the rows into $N \in \{16, 32, 64\}$ subsets.
- The explained variances in all cases are about 0.064.

	Cardinality		Time (Sec)		Iteration	
N	Sparse	Dense	Sparse	Dense	Sparse	Dense
16	1585	1580	40.1	45.3	2000	2250
32	1574	1574	43.9	117.5	2144	3150
64	1585	1572	110.1	397.7	2489	3868

Splitting The Columns

- Set n = 2000 and p = 100,000.
- Let $M \in \{1, 2, 4, 8, 16, 32, 64\}$.
- Apply Algorithm 2, using the M-LSP regularizer.

	Cardinality		Time (Sec)		lteration	
М	Sparse	Dense	Sparse	Dense	Sparse	Dense
1	11960	11965	59.90	249.09	58	208
2	11960	11964	43.22	121.19	88	259
4	11962	11965	40.19	80.39	168	321
8	11963	11963	30.58	54.77	222	392
16	11962	11965	23.90	41.61	290	469
32	11962	11964	13.85	25.22	328	548
64	11961	11964	19.75	31.98	448	611

Conclusion

- We propose non-convex ADMM algorithms to solve distributed SPCA problems.
- Data matrix can be distributed across the rows as well as columns.
- Our methods deal with non-convex regulizers to promote sparsity.

Future Works

- Extend the star network to an arbitrary one with non-convex functions.
- Try to find conditions under which we can reach the global optimal solution.
- Apply the same way to prove the convergence of ADMM for more non-convex cases.

Thanks for Your Attention.

