## Constrained Clipping for PAPR Reduction in VLC Systems with Dimming Control

Kai Ying<sup>1</sup>, Zhenhua Yu<sup>2</sup>, Robert J. Baxley<sup>3</sup> and G. Tong Zhou<sup>1</sup>

Georgia Institute of Technology, Atlanta, GA, USA

<sup>2</sup> Texas Instruments, Dallas, Texas, USA

<sup>3</sup> Bastille Networks, Atlanta, GA, USA

- Introduction
- Double-sided Clipping
- Constrained Clipping
- Numerical Results





VLC: visible light

Dynamic-range-limited and real-valued

#### **Transmitter:**

light emitting diode (LED) converts the amplitude of the electric signal into the intensity of the optical signal.

#### **Receiver:**

A photodetector (PD) or an image sensor generates an electric signal proportional to the intensity of the received optical signal.

- Differences from Radio Frequency (RF)
  - Real-valued
  - Dynamic-range-limited (turn-on/saturation)
  - DC biasing required

- Motivation of peak-to-average power ratio (PAPR) reduction
  - Considering signals with the same variance



- Motivation of peak-to-average power ratio (PAPR) reduction
  - Considering signals with the same variance



- Clipping is the simplest way to reduce PAPR
- Motivation of clipping
  - Tradeoff between clipping distortion and signal power



- Clipping is the simplest way to reduce PAPR
- Motivation of clipping
  - Tradeoff between clipping distortion and signal power



 $G=1, B_1 > B$ 

- Difference from amplitude-limited system
  - Double-sided clipping

G=1,  $B=(A_{max}+A_{min})/2$ 

Clipping ratio is impacted by both gain and bias



 $G_1 > G_1 > B_1 > B$ 

- Difference from amplitude-limited system
  - Double-sided clipping

 $G_1 > G_2$ ,  $B = (A_{\text{max}} + A_{\text{min}})/2$ 

Clipping ratio is impacted by both gain and bias



#### **Double-sided PAPR**

- Orthogonal frequency division multiplexing (OFDM)
  - Time domain:  $x_n$  Real-valued
  - Frequency domain:  $X_k = X_{-k}^*, 1 \le k \le N/2 1$  Hermitian symmetry
- PAPR on both sides
  - Upper PAPR (UPAPR):

$$\mathcal{U}(x_n) \triangleq \frac{\left(\max_{0 \le n \le N-1} x_n\right)^2}{\sigma_x^2}$$

Asymmetric factor

$$\rho \triangleq \frac{(A_{max} - B)^2}{(A_{min} - B)^2}$$

Joint CCDF of UPAPR and LPAPR

CCDF
$$\{U(x_n), \mathcal{L}(x_n), \gamma, \rho\}$$
  

$$\triangleq 1 - Pr\{U(x_n) \le \gamma, \mathcal{L}(x_n) \le \gamma/\rho\}$$

Lower PAPR (LPAPR):

$$\mathcal{L}(x_n) \triangleq \frac{\left(\min_{0 \le n \le N-1} x_n\right)^2}{\sigma_x^2}$$

Clipping in time domain

$$\bar{x}_n = \begin{cases} x_{max}, & x_n > x_{max}, \\ x_n, & x_{min} \le x_n \le x_{max}, \\ x_{min}, & x_n < x_{min}. \end{cases} \qquad x_{max} = \frac{A_{max} - B}{G}$$

$$x_{min} = \frac{A_{min} - B}{G}$$

Distortion in frequency domain

$$E_k = \bar{X}_k - X_k$$

Error vector magnitude (EVM)

$$\text{EVM} \triangleq \frac{1}{\sigma_X} \sqrt{\frac{1}{N} \sum_{k \in \mathcal{I}} |E_k|^2}$$

Clipping ratio / Normalized clipping levels

■ Upper side: 
$$\lambda_{upper} = \frac{x_{max}}{\sigma_x}$$

■ Lower side:  $\lambda_{lower} = -\frac{x_{min}}{\sigma_x}$ 
 $\lambda_{upper} = \sqrt{\rho}\lambda_{lower}$ 

 To satisfy the EVM requirement, clipping levels cannot be very low.

**Too conservative!** 

## Block diagram



### Distortion Mitigation



- How to revise subcarriers with large distortions
  - Modifying frequency domain symbols will change the time domain signals. We make the change as small as possible.
  - Parseval's Theorem

$$\sum_{n=0}^{N-1} |\tilde{x}_n - \bar{x}_n|^2 = \sum_{k \in \mathcal{I}} |\tilde{X}_k - \bar{X}_k|^2$$

Minimize the change in frequency domain

$$\tilde{X}_k = X_k + Th \cdot \sigma_X e^{j \angle E_k}, \quad k \in \hat{\mathcal{I}} \backslash \mathcal{M}$$



R. J. Baxley, et al., Constrained clipping for crest factor reduction in OFDM, IEEE Transactions on Broadcasting, vol. 52, no. 4, pp. 570-575, Dec. 2006.

■ PAPR reduction with various clipping levels



Probability that signal exceeds 9 dB in UPAPR or 8 dB in LPAPR



# Thank you!

Q&A