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Motivation

Acquiring downlink channel information hd at base station (CSIT):

TDD: easy, FDD: difficult.
BS has N antennas, user has 1 antennas: hd , hu ∈ CN×1

Training Feedback
TDD: hd = hu, uplink training
(UE: φ ∈ C1×T u

, BS: Y u = huφ+ nu)
T u ≥ 1 No

FDD: hd 6= hu, downlink training

(BS: Φ ∈ CT d×N , UE: Y d = Φhd + nd )

T d ≥ N ∝ N

FDD is widely employed in existing communication systems:

Beneficial if directly adopt Massive MIMO to FDD.

FDD Downlink training: Y d = Φhd + nd ,Φ ∈ CT d×N :

To be practical: T d small.
T d < N: underdetermined inverse problem, infinite solutions.

Explore channel structure to regularize the problem?

Sparse channel structure: compressive sensing.
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Compressed Channel Estimation

Low dimensional representation of high dimensional signal:

Find a Ψ such that hd = Ψβd , ‖βd‖0 < N.

Downlink training: Y d = Φhd + nd = ΦΨβd + nd

Apply compressive sensing algorithm to estimate the sparse
coefficient βd .

Compressed Channel Estimation :

β̂d = arg min
βd
‖βd‖0 subject to ‖Y d − ΦΨβd‖22 ≤ σ2

ĥd = Ψβ̂d

(1)

Many practical algorithms. Measurements: T d ∝ ‖βd‖0 < N

Core requirement: find Ψ.
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Sparse Channel Representation
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Drawbacks of Existing Work

The existing work that applies compressed channel estimation use
orthogonal DFT basis as Ψ:

Agree with array manifold using ULA.

Infinite number of antennas, limited scattering environment.

For common channels models, such as 3GPP SCM channels:

High ‖βd‖0: hd = ΨDFTβ
d

T d ∝ ‖βd‖0: lose benefits of compressive sensing

One easy better choice is overcomplete DFT matrix: redundancy in basis

Only applicable to ULA.

Can not adapt to specific cell characteristics: urban, rural, hills, etc.

How can we design a dictionary/basis such that:

Adapt to specific cell properties (antenna, environment).

Lead to sparse representation.
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Our Previous Work: Learning Good Representation

Rather than using predefined dictionary/basis, learn cell specific Dd

from data:

Overcomplete: Dd ∈ CN×M ,N < M
Fit model to data: hdi ≈ Ddβd

i , i = 1, . . . , L
Encourage sparsity: ‖βd

i ‖0 � M,∀i .

What data can be utilized?

Channel measurements: collected within a specific cell.
Effect of environment on the transmitted electromagnetic waves
represented at antennas.
Big data paradigm in wireless communication.
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Dictionary Learning

Combine data fitting and sparsity encouragement, dictionary learning
can be formulated:

min
Dd ,βd

1 ,...,β
d
L

λ‖Hd − DdBd‖2F +
L∑

i=1

‖βdi ‖0 (2)

where Hd = [hd1 , . . . , h
d
L ] Bd = [βd1 , . . . , β

d
L ].

Benefits of dictionary learning and compressed channel estimation:

Applicable to any antenna configurations: no assumed structure.

Robust to any irregularities: mismatched antennas, non-plane wave.

Training and feedback overhead: proportional to channel sparsity S .
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Joint Uplink/Downlink Dictionary
Learning and Compressed Channel

Estimation
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Utilizing Uplink Channel Information

In compressive sensing, more measurements are always better:

More information about the underlying sparse coefficients.

Better recovery performance.

In Massive MIMO, it implies T d to be larger:

Larger training and feedback overhead.

Waste of resources.

Is it possible to have more information about the underlying sparse
coefficient, but without need of larger T d?

From uplink channel hu:

Easy to obtain: T u ≥ 1.

Common sparse channel structure between hd and hu.
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Joint Uplink/Downlink Channel Representation

Similar to hd = Ddβd : hu = Duβu.

Duplex distance not large: similar scattering effect for uplink and
downlink transmission.

Figure 1: Uplink/Downlink Channel Model

In our model, equivalently to assume χ(βu) = χ(βd), where
χ(β) = {i |β(i) 6= 0} denotes the set of locations of nonzero entries in
β.
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Joint UL/DL Dictionary Learning

Joint Uplink/Downlink Dictionary Learning

min
Du ,Bu ,Dd ,Bd

‖Hu − DuBu‖2F + ‖Hd − DdBd‖2F

subject to ‖βui ‖0 = ‖βdi ‖0 ≤ T0, χ(βui ) = χ(βdi ) ∀i
(3)

Joint Uplink/Downlink Sparse Representation

hu ≈ Duβu, hd ≈ Ddβd

‖βui ‖0 = ‖βdi ‖0 ≤ T0, χ(βui ) = χ(βdi ) ∀i
(4)

Joint Uplink/Downlink Compressed Channel Estimation :

arg min
βu ,βd

‖Y u − φuDuβu‖22 + ‖Y d − ΦdDdβd‖22

subject to χ(βu) = χ(βd), ‖βu‖0 = ‖βd‖0 ≤ T0

(5)
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Benefits of Joint Sparse Framework

Joint dictionary learning:

Regularize the learning process.
Better performance when underlying generative model satisfies joint
sparsity.

Joint channel estimation:

Better recovery: additional measurements from uplink training.

In other words, we can further decrease downlink training duration
T d with the same performance.
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Numerical Results
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Simulation Settings

Apply 3GPP SCM: far scatterer clusters and local scatterer clusters.

Each channel snapshot:

4 local SC: locations change with user.
2 far SC: fixed locations.

Training samples: 50000 channel snapshots uniformly sampled in the
cell.

100 antennas at base station and 1 antenna at user. Apply uniform
linear array.

Pair of uplink/downlink channel: same angles, different amplitudes
and phases.
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Low Dimension Representation
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Dictionary Learning in Channel Representation

Constrain T0 atoms to be used. Compare MSE(E‖hd − ĥd‖22) between hd

and ĥd = Ddβd . ‖hd‖2 = 1.

Figure 2: MSE comparison.
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Compressed Channel Estimation
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Dictionary Learning in Joint UL/DL Channel Estimation

Compare MSE between hd and ĥd = Dd β̂d . β̂d = OMP(Y d ,Φ,Dd), or
β̂d = jointOMP(Y d ,Φ,Dd ;Y u, φ,Du). Dd ,Du: learned dictionary.

Figure 3: MSE comparison.
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Conclusion

In this work we propose a novel downlink channel estimation
algorithm in FDD Massive MIMO systems.

Joint uplink/downlink dictionary learning can explore similar
scattering effect between the uplink and downlink channel, leading to
a joint sparse representation.

Joint compressed channel estimation can further improve the recovery
performance by utilizing uplink training information.
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