New Results on the Sum of Two Generalized Gaussian Random Variables

Hamza SOURY (KAUST, Saudi Arabia) Mohamed-Slim Alouini (KAUST, Saudi Arabia)

Orlando, FL December 16, 2015

Hamza Soury New Results on the Sum of Two Generalized Gaussian Random Variables GlobalSIP 2015 1/ 27

イロト イヨト イヨト イヨト

Motivation

- \checkmark Gaussian noise is widely used in communication systems
- ✓ In sensor networks and local spectrum sensing, the deployed noise is Generalized Gaussian (GG)
- ✓ In UWB, interference and noise can be modeled as GG distribution
- ✓ Noise + Interference can be modeled as sum of GG random variables
- ✓ The statistics of the SGG distribution (PDF, CDF, moments, cumulant...) should be studied
- An approximation of the SGG by a single GG random can be used to get simplified results

イロン 不良と 不良と 不良と

- 2 Sum of Generalized Gaussian RV
- 3 Approximation of the PDF of the Sum of two GGRV
- 4 PDF & CDF Simulations
- 5 Summary

イロト イヨト イヨト イヨト

- **2** Sum of Generalized Gaussian RV
- 3 Approximation of the PDF of the Sum of two GGRV
- 4 PDF & CDF Simulations
- **5** Summary

Definition

- ✓ GG distribution is characterized by a parameter α , called shaping parameter (or exponent parameter)
- ✓ The PDF of GGD(μ, σ) is given as

$$f_X(x) = rac{lpha \Lambda}{2\Gamma(1/lpha)} \exp\left(-\Lambda^{lpha} |x-\mu|^{lpha}
ight) \ \forall x \in \mathbb{R},$$

where $\Lambda = \frac{\Lambda_0}{\sigma} = \frac{1}{\sigma} \sqrt{\frac{\Gamma(3/\alpha)}{\Gamma(1/\alpha)}}$, a normalization coefficient.

✓ For $\alpha = 1, 2, \infty$, we get Laplacian, Gaussian, and uniform distributions, respectively.

イロン 不良と 不良と 不良と

Cumulative Distribution Function

✓ The complementary CDF is obtained as

$$Q_{\alpha}(x) = rac{1}{2\Gamma(1/lpha)}\Gamma(1/lpha, \Lambda_0^{lpha} x^{lpha}), \ \ {
m for} \ {
m x} \geq 0,$$

✓ The CDF is given by

$$F_X(x) = 1 - Q_{\alpha}\left(\frac{x-\mu}{\sigma}\right)$$

 \checkmark Q_{α} is reduced to the classical Gaussian *Q*-function for $\alpha = 2$.

・ロト ・日本 ・モート ・モート

Characteristic Function

- ✓ CHF is the Fourier Transform of the PDF
- ✓ PDF is even ($\mu = 0$) ⇒ CHF becomes cosine transform of the PDF $_{c^{\infty}}$

$$\varphi_{\alpha}(t) = \int_0^\infty \cos(tx) f_X(x) dx$$

- ✓ Using alternative expressions of cos and f_X , CHF appears as an integral of 2 Fox H-functions
- \checkmark Using integral identity 1, the CHF is expressed as

$$arphi_{lpha}(t) = rac{\sqrt{\pi}}{\Gamma(1/lpha)} \mathrm{H}_{1,2}^{1,1} \left[rac{\sigma^2 \Gamma(1/lpha)}{4 \Gamma(3/lpha)} t^2 \left| egin{array}{c} (1 - rac{1}{lpha}, rac{2}{lpha}) \ (0,1), (rac{1}{2},1) \end{array}
ight]$$

¹A. Kilbas and M. Saigo. *H-Transforms : Theory and Applications* (Analytical Method and Special Function). 1st edition. CRC_Press; 2004.

MGF, Moment, and Cumulant

- \checkmark The MGF is obtained from the CHF as $M_{lpha}(t)=arphi_{lpha}(-it)$
- $\checkmark\,$ The odd moments are equal to 0, and the even moments are

$$m_{2n}(X) = \mathbb{E}[X^{2n}] = \sigma^{2n} \frac{\Gamma(1/\alpha)^n}{\Gamma(3/\alpha)^n} \frac{\Gamma(\frac{2n+1}{\alpha})}{\Gamma(1/\alpha)}$$

- ✓ Cumulant generating function: $K_{\alpha}(t) = \log M_{\alpha}(t)$
- ✓ New results: the even cumulants of zero mean GGD

$$k_{2n}(X) = -\sum_{m_1+2m_2+\dots+nm_n=n} \frac{(2n)!(m_1+\dots+m_n-1)!}{m_1!m_2!\dots m_n!} \prod_{1 \le j \le n} \left(-\frac{\sigma^{2j}\Gamma(1/\alpha)^j\Gamma(\frac{2j+1}{\alpha})}{\Gamma(3/\alpha)^j\Gamma(1/\alpha)(2j)!} \right)^{m_j}$$
KAUST

・ロン ・回 と ・ ヨン ・ ヨン

Kurtosis

- ✓ Measures the tailedness of the distribution (i.e. more kurtosis means heavier tail)
- \checkmark For the GGD, the kurtosis expressed as

$$Kurt(X) = \frac{k_4(X)}{k_2(X)^2} = \frac{\Gamma(1/\alpha)\Gamma(5/\alpha)}{\Gamma(3/\alpha)^2} - 3$$

✓ Examples:

- *Kurt*(*Laplace*) = 3, heavy tail
- *Kurt*(*Gaussian*) = 0, normal tail
- Kurt(Uniform) = -1.2, no positive-valued tail
- ✓ Applications: estimate the distribution parameter...

<ロ> (四) (四) (三) (三)

2 Sum of Generalized Gaussian RV

3 Approximation of the PDF of the Sum of two GGRV

- 4 PDF & CDF Simulations
- **5** Summary

Characteristic Function of the Sum

- ✓ CHF of the sum of 2 independent GGD is the product of their CHFs ⇒ $\varphi_Z(t) = \varphi_X(t)\varphi_Y(t)$
- ✓ The PDF of the sum, $f_Z(z)$, is the inverse cosine transform of the CHF

$$f_{Z}(z) = \frac{1}{2\Gamma(1/\alpha)\Gamma(1/\beta)} \int_{0}^{\infty} \cos(t(\mu - z)) \operatorname{H}_{1,2}^{1,1} \left[A \ t^{2} \left| \begin{array}{c} (1 - \frac{1}{\alpha}, \frac{2}{\alpha}) \\ (0, 1), (\frac{1}{2}, 1) \end{array} \right] \right. \\ \times \operatorname{H}_{1,2}^{1,1} \left[B \ t^{2} \left| \begin{array}{c} (1 - \frac{1}{\beta}, \frac{2}{\beta}) \\ (0, 1), (\frac{1}{2}, 1) \end{array} \right] dt,$$

where
$$\mu = \mu_1 + \mu_2$$
, $A = rac{\sigma_1^2 \Gamma(1/lpha)}{4 \Gamma(3/lpha)}$, and $B = rac{\sigma_2^2 \Gamma(1/eta)}{4 \Gamma(3/eta)}$

✓ The CDF is the primitive of the previous formula that vanishes at $-\infty$, so it is the inverse sine transform of $\varphi_Z(t)$ KAUST

PDF and CDF of the Sum

PDF of the sum in terms of the BFHF

$$f_{Z}(z) = \frac{\sqrt{\pi}}{\Gamma(1/\alpha)\Gamma(1/\beta)|z-\mu|} \times H^{0,1;1,1;1,1}_{2,0;1,2;1,2} \left[\frac{4A}{(z-\mu)^{2}}, \frac{4B}{(z-\mu)^{2}} \left| \begin{pmatrix} \frac{1}{2}, 1, 1 \end{pmatrix}, \begin{pmatrix} 0, 1, 1 \end{pmatrix} \right| \begin{pmatrix} 1 - \frac{1}{\alpha}, \frac{2}{\alpha} \end{pmatrix} \left| \begin{pmatrix} 1 - \frac{1}{\beta}, \frac{2}{\beta} \end{pmatrix} \right| \\ (0, 1), (\frac{1}{2}, 1) \left| \begin{pmatrix} 0, 1 \end{pmatrix}, (\frac{1}{2}, 1) \right|$$
(1)

✓ CDF of the sum

$$F_{Z}(z) = \frac{1}{2} + \frac{\sqrt{\pi} \operatorname{sign}(z-\mu)}{2\Gamma(1/\alpha)\Gamma(1/\beta)} \times H_{2,0;1,2;1,2}^{0,1;1,1;1,1} \left[\frac{4A}{(z-\mu)^{2}}, \frac{4B}{(z-\mu)^{2}} \middle| \frac{(\frac{1}{2},1,1),(1,1,1)}{(1-\frac{1}{\alpha},\frac{2}{\alpha})} \middle| \frac{(1-\frac{1}{\beta},\frac{2}{\beta})}{(0,1),(\frac{1}{2},1)} \middle| \frac{(1-\frac{1}{\beta},\frac{2}{\beta})}{(0,1),(\frac{1}{2},1)} \right]$$
(2)

Hamza Soury New Results on the Sum of Two Generalized Gaussian Random Variables GlobalSIP 2015 12/27

KAUST

・ロト ・回ト ・ヨト ・ヨト

Statistics of the Sum

$$\sqrt{\mathsf{MGF}} : M_Z(t) = \varphi_Z(-it)$$

$$\sqrt{\mathsf{Moment:}} m_{2n+1}(Z) = 0 \text{ and}$$

$$m_{2n}(Z) = \frac{\sigma_2^{2n} \Gamma(\frac{1}{\beta})^n}{\Gamma(\frac{1}{\alpha}) \Gamma(\frac{1}{\beta}) \Gamma(\frac{3}{\beta})^n} \sum_{k=0}^n \binom{2n}{2k} \left(\frac{\sigma_1^2}{\sigma_2^2} \frac{\Gamma(\frac{1}{\alpha}) \Gamma(\frac{3}{\beta})}{\Gamma(\frac{3}{\alpha}) \Gamma(\frac{1}{\beta})} \right)^k \Gamma\left(\frac{2k+1}{\alpha}\right) \Gamma\left(\frac{2n-2k+1}{\beta}\right)$$

$$\sqrt{\mathsf{Kurtosis:}}$$

$$Kurt(Z) = \frac{\sigma_1^4}{\sigma^4} \frac{\Gamma(\frac{1}{\alpha})\Gamma(\frac{5}{\alpha})}{\Gamma(\frac{3}{\alpha})^2} + \frac{\sigma_2^4}{\sigma^4} \frac{\Gamma(\frac{1}{\beta})\Gamma(\frac{5}{\beta})}{\Gamma(\frac{3}{\beta})^2} + 6\frac{\sigma_1^2 \sigma_2^2}{\sigma^4} - 3,$$

where $\sigma^2 = \sigma_1^2 + \sigma_2^2$

KAUST

▲ロン ▲御と ▲注と ▲注と

2 Sum of Generalized Gaussian RV

3 Approximation of the PDF of the Sum of two GGRV

4 PDF & CDF Simulations

5 Summary

Motivation

- $\checkmark\,$ Similar distribution properties of the sum of 2 GGD and one $\rm GGD^2$
- ✓ Approximation of the sum distribution by one GGD
- \checkmark Estimation of one shape parameter instead of two
- Reducing the complexity of the expression of the PDF of the sum (BFHF)
- ✓ Simplification of the PDF/CDF expressions
- Less complexity expressions of system performance metrics (BER, SER...)

²Qian Zhao, Hong-Wei Li, and Yuan-Tong Shen. "On the sum of generalized Gaussian random signals". In: *Proc. of the 7th International Conference on Signal Processing (ICSP'2004)*. Vol. 1. Beijing, China, 2004, 50–53 vol. 1.

Kurtosis Approach

✓ Equalize the Kurtosis of the sum to the Kurtosis of the new distribution (Z_{γ}) with shape parameter γ

 $Kurt(Z_{\gamma}) = Kurt(Z)$

$$\frac{\Gamma(\frac{1}{\gamma})\Gamma(\frac{5}{\gamma})}{\Gamma(\frac{3}{\gamma})^2} = \frac{1}{(1+\delta)^2} \left(\delta^2 \frac{\Gamma(\frac{1}{\alpha})\Gamma(\frac{5}{\alpha})}{\Gamma(\frac{3}{\alpha})^2} + \frac{\Gamma(\frac{1}{\beta})\Gamma(\frac{5}{\beta})}{\Gamma(\frac{3}{\beta})^2} + 6\delta \right),$$

where $\delta = \frac{\sigma_1^2}{\sigma_2^2}$

✓ Solve the system $h(\gamma) = C$, with unknown γ and C is positive known value

Kurtosis Approach (2)

Figure 1: The curve of $h(\gamma)$ for positive values of γ .

✓ $h(\cdot)$ is bijection (Fig.1) ⇒ the equation $h(\gamma) = C$ has unique solution γ_{Kurt} (examples of γ_{Kurt} in Table I)

<ロ> (四) (四) (三) (三)

Best Tail & CDF Approximation methods

✓ Best Tail: Minimizing the square error of the desired tail (defined for $z ≥ n\sigma$)

$$\gamma_{\mathit{Tail}} = rg\min_{\gamma > 0} \int_{n\sigma}^{\infty} \left(f_{\gamma}(z) - f_{Z}(z)
ight)^{2} dz$$

✓ CDF Approximation: Minimize the error between the exact and approximated CDF

$$\gamma_{CDF} = \arg\min_{\gamma>0} \int_0^\infty \left(F_\gamma(z) - F_Z(z)\right)^2 dz$$

Hamza Soury New Results on the Sum of Two Generalized Gaussian Random Variables GlobalSIP 2015 18/ 27

Examples of estimated γ

Table 1: Shape parameter for the approximated distribution with $\sigma_1 = 1$

(α, β, δ)	γ_{Kurt}	γ_{CDF}	γ Tail			
			<i>n</i> = 0	1	2	3
(0.5, 0.5, 1)	0.626	0.467	0.768	0.673	0.624	0.642
(0.5, 0.5, 2)	0.604	0.492	0.762	0.656	0.603	0.584
(0.5, 0.7, 2)	0.633	0.501	0.861	0.741	0.636	0.834
(0.5, 1.2, 1)	0.779	0.602	1.160	1.053	0.757	1.165
(1.5, 1.5, 2)	1.673	1.373	1.738	1.702	1.683	1.664
(1.5, 2.5, 1)	1.908	1.391	1.979	1.959	1.952	1.887
(1.5, 2.5, 2)	1.753	1.443	1.842	1.799	1.771	1.741
(2.5, 3,3)	2.295	1.941	2.226	2.261	2.267	2.335

- ✓ γ_{Kurt} and γ_{Tail} are close to each other (Kurtosis measures the heavy tail)
- ✓ γ_{CDF} is little far from other methods ⇒ Each method can be used according to the scenario in case.

- 2 Sum of Generalized Gaussian RV
- 3 Approximation of the PDF of the Sum of two GGRV
- 4 PDF & CDF Simulations

Impact of Kurtosis and CDF approaches on the PDF

Figure 2: Exact and approximated PDF of the sum of two GGRV. $\beta = 1.5$, $\delta = 2$, and $\sigma_1 = 1$.

- Perfect match b/w simulated and exact PDF
- ✓ Good tail approximation for both methods
- $\alpha < 2$: Tail matching for both methods, but big difference around the mean
- $\alpha > 2$: Better PDF matching using Kurtosis approach than using CDF approach which approximates the CDF rather than the PDF.

(日)、<回)、<三)、<三</p>

Impact of estimation approaches on the CDF

- Kurtosis and Tail (n = 3) methods give very close results to the exact CDF
- ✓ In linear scale, all methods are close to the CDF at saturation, i.e. $F_Z(z) \approx 1$.
- Plot the gap in Log scale.

Figure 3: CDF of the sum using Kurtosis, optimal tail, and optimal CDF approaches. $\alpha = 2.5$, $\beta = 1.5$, $\delta = 2$, and $\sigma_1 = 1$

Comparison of the Complementary CDF

- ✓ CDF approach matches exact CDF of the sum for both values of α
- α < 2 Kurtosis
 and Tail methods
 are far from the
 exact CDF
- ✓ α > 2 The gap decreases and these methods become close to the exact (as seen in Fig.2).

Figure 4: Complementary CDF of the sum of two GGRV. $\beta = 1.5$ and $\delta = 2$.

- 2 Sum of Generalized Gaussian RV
- 3 Approximation of the PDF of the Sum of two GGRV
- 4 PDF & CDF Simulations

Conclusion

- \checkmark Expression of the statistics of the GGD
- ✓ Derivation of the distribution of the sum of two independent GG random variables
- $\checkmark\,$ Expression of the statistics of the sum distribution in terms of the FHF and BFHF
- Approximation of the distribution of the sum by single GGD using 3 methods
- ✓ Different behaviors of these 3 approaches regarding the exact distribution
- Choose of the suitable approach depends on the application in case

・ロト ・日本 ・モート ・モート

Thank you for your attention Questions ?

(< ≥) < ≥)</p>

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Hamza Soury New Results on the Sum of Two Generalized Gaussian Random Variables GlobalSIP 2015 26/27

New Results on the Sum of Two Generalized Gaussian Random Variables

Hamza SOURY (KAUST, Saudi Arabia) Mohamed-Slim Alouini (KAUST, Saudi Arabia)

Orlando, FL December 16, 2015

Hamza Soury New Results on the Sum of Two Generalized Gaussian Random Variables GlobalSIP 2015 27/27

イロト イヨト イヨト イヨト