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What is topology?

Not this!
This is 
TopoGRAPHY!

(Thanks USGS!)
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What is topology?

=

Topology is the study of spaces 
under continuous deformations
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Topology and the curse of thresholds
● Although topology is very flexible, it also seems quite 

brittle.  And in signal processing, that's bad!

● But a nice idea persists… and in the end prevails
Herbert Edelsbrunner, David Letscher, and Afra Zomorodian, Topological persistence 
and simplification, Discrete Comput. Geom. 28 (2002), no. 4, 511–533.

● Rather than selecting one threshold, let's use them all! 

Pick a different threshold… get different topology
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Simplicial complexes
● A simplicial complex is a collection of vertices and ...

A vertex represents an 
individual measurement 
taken by a sensor
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Simplicial complexes
● … edges (pairs of vertices) and ...
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An edge represents the fact 
that two measurements 
should be tested for 
consistency

Usually people 
call this a graph; 
I will too
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Simplicial complexes
● ... higher dimensional simplices  (tuples of vertices)
● Whenever you have a simplex, you have all subsets, 

called faces, too.
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A simplex represents that 
several measurements 
should be tested for 
consistency
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Simplicial chain complex
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Simplicial chain complex
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Simplicial chain complex
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Simplicial chain complex
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Simplicial chain complex

ℝ ℝ4 ℝ4 0

[v
1,v

2,v
3]

[v
1
,v

2
]

[v
1
,v

3
]

[v
2
,v

3
]

[v
3
,v

4
]

[v
1,v

2]
[v

1,v
3]

[v
2,v

3]
[v

3,v
4]

[v
1
]

[v
2
]

[v
3
]

[v
4
]

+1
-1
+1
 0

-1  -1   0   0
+1  0  -1   0
 0 +1  +1 -1
 0   0   0  +1

-1  -1   0   0
+1  0  -1   0
 0 +1  +1 -1
 0   0   0  +1

+1
-1
+1
 0

0
0
0
0

=

∂1∂2∂3 ∂0



Michael Robinson13

Simplicial chain complex
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Homology of a chain complex
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Homology of a chain complex
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Goal: obtain a filtration of spaces from a finite 
pseudometric space X

Tactic: Vietoris-Rips complexes

VRε(X) = set of all subsets of X with diameter ε or less

● This is an abstract simplicial complex, and

VRε(X) ⊆ VRη(X) if ε ≤ η

Persistent homology

  X0    ⊆      X1   ⊆       X2    ⊆ …   ⊆      X
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Goal: obtain a filtration of spaces from a finite 
pseudometric space X

Tactic: Vietoris-Rips complexes

VRε(X) = set of all subsets of X with diameter ε or less

● This is an abstract simplicial complex, and

VRε(X) ⊆ VRη(X) if ε ≤ η

Persistent homology

Hk(X0) → Hk(X1) → Hk(X2) → … → Hk(X)
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Persistence and model robustness

Signal level

Dimension 0

Dimension 1
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Persistence diagrams

Dimension 0

Dimension 1
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This sessions' talks



Hierarchical Overlapping Clustering
 Clustering: Partition dataset. But sets might not admit a partition.
• Where should the green points go?

 Coverings: Points can be classified in more than one cluster.

 Hierarchical Overlapping Clustering through Cut Metrics.
• Non-overlapping Clustering: Each point in only one cluster. Partition.
• Hierarchical Clustering: Collection of partitions. Resolution of clusters.
• Ultrametrics: Determines resolution at which nodes are clustered together.
• Non-overlapping Clustering → Hierarchical Clustering → Ultrametrics

• Convex combination of ultrametrics → Cut Metrics
• Cut Metrics: Resolution at which nodes are grouped together. No transitivity.
• Nested coverings: Collection of coverings.
• Covering: Nodes can be in more than one group.
• Cut Metrics → Nested Coverings (Hierarchical) → Covering

 Results: MNIST Handwritten Digits. Authorship Attribution.

Classify plays by author
and co-authored plays

Identify ambiguous digits
When classifying 1 and 7

Fernando Gama, Santiago Segarra, Alejandro Ribeiro



Distances between Directed Networks and Applications
Facundo Mémoli, joint work with Samir Chowdhury

Background:

Data sets containing asymmetric edge relations can be interpreted as

directed, weighted networks.

A central goal of network analysis is to develop metrics that efficiently

compute dissimilarity between networks.

Our Contributions:

A legitimate metric between directed, weighted networks.

Easily computable invariants to test for dissimilarity between networks.

Lower bounds for the network distance, based on these invariants.
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Hypergraph signal processing

Undirected
hypergraph

Abstract
simplicial
complex

Flag
complex

Undirected
graph

Simplices are defined by their 
vertices, simplices always have 
all their faces

Vertices and 
edges only

Hyperedges defined by 
vertices, but other than 
that, anything goes...

All cliques are simplices

Sergio Barbarossa and Mikhail Tsitsvero
Idea: Hypergraphs generalize graphs and simplicial complexes
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Persisent local homology
Brittany Fasy and Bei Wang

Idea: local homology detects stratifications!

Local H1 Local H2

Magenta = 0
Blue = 1
Cyan = 2
Green = 3
Yellow = 4
Red = 5+



Michael Robinson

Persistent homology and sliding windows
Jose Perea

Idea: 

Input

Output

Persistent homology

Window region
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For more information

...or if you need anything...

  Harish Chintakunta, hchintakunta@flpoly.org

    Michael Robinson, michaelr@american.edu

    Hamid Krim, ahk@ncsu.edu
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