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Introduction

• Microblogging Services: Twitter, Sina Weibo

• Mining Microblog Text (Tweet)

• Text representation: vector space model[1]

• Short length: data sparse problem
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Introduction

• Solutions for Short Text

• Expanding: add semantically related terms [2][3]

• Dimension reduction

• Latent semantic analysis (LSA) [4]

• Topic modeling 

• Low-dimensional representation: probability distribution over 

latent topics

• Latent Dirichlet allocation (LDA) [11] and its variants [5][6]

• Problem of topic-based representation: both the number of topics 

and the content of topics change frequently in microblog 

environment
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Introduction

• Deep Networks-based Dimensionality Reduction [7~10]

• Basic Idea of the Proposed Approach: utilize the semantic

relatedness derived from retweet and hashtags
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Basics of Deep Networks

• Deep Belief Networks

• Restricted Boltzmann Machines

• Stack of RBMs: layer-by-layer training 
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Basics of Deep Networks

• Deep Autoencoder

• Pre-training: layer-by-layer

• Fine-tuning: minimize the reconstruction error 𝑙𝐴𝐸
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Tailor Deep Networks to Tweets

• Basics of t-distributed Maximally Collapsing Metric Learning[12]

• Learns a mapping function 𝑓 ∙ from high-dimensional space to low-

dimensional space

• Supervised learning: (data, label)

• Two probability distributions

• 𝑃 = 𝑝𝑖𝑗 :  𝑝𝑖𝑗 > 0 iff 𝐱 𝑖 and 𝐱 𝑗 belong to the same class

• 𝑄 = 𝑞𝑖𝑗 : normalized t-distribution

• 𝑞𝑖𝑗: similarity in low-dimensional space

• 𝑝𝑖𝑗: ground truth of the similarity

• Training objective: minimize 
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Tailor Deep Networks to Tweets

• Apply tMCML to Tweets

• Supervised learning: (data, label)

• Define 𝑝𝑖𝑗
• Observation: two tweets that hold a retweet relationship or share the 

same hashtag are semantically similar

• Indicator 𝛿𝑖𝑗 =  
)1, 𝐱(𝑖) → 𝐱(𝑗) ∨ 𝐱(𝑗) → 𝐱(𝑖) ∨ #𝐱(𝑖) = #𝐱(𝑗

0, 𝑒𝑙𝑠𝑒

• 𝑝𝑖𝑗 =
𝛿𝑖𝑗

 𝑘𝑙:𝑘≠𝑙 𝛿𝑘𝑙

• Fine-tuning by tMCML
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Tailor Deep Networks to Tweets

• Double Fine-tuning

• What if only a small fraction of training samples are involved in a 

retweet relationship or labeled with hashtags?
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Experiments

• DataSet

• Source: Sina Weibo

• Original representation: term frequency vector, 2000 most frequent 

terms  
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Test Set Tweets Topics
Avg Length of Tweets

（Term）

Percentage of Non-zero 

Elements in the  

document-term matrix

10T 500 10 26.12 0.415%

30T 1500 30 27.32 0.416%

50T 2500 50 27.52 0.428%

Training

Set
25750 ~500 23.51 0.414%
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Experiments

• Experiment Setup

• Deep Models

• Architecture: 2000-500-250-125-32

• DBN: pre-training 10 epochs, fine-tuning 20 epochs

• tMCML10/tMCML20: tMCML-based fine-tuning  10/20 epochs

• tMCML10-AE/tMCML20-AE: fine-tuning tMCML10/tMCML20 

for 20 epochs

• Reference Models

• LSA (latent semantic analysis): 32 latent concepts

• LDA (latent Dirichlet allocation): 32 latent topics
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Experiments

• Evaluation Metrics

• Cluster analysis on low-dimensional representations: k-means

• Cluster evaluation indices [13][14]

• Adjust Rand Index (ARI) 

• Joint Normalized Mutual Information (NMI)

• Set Matching F1-measure(SM-f1)

• Results
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Experiments

• Discussion: Advantages of Deep Models
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Experiments

• Discussion: Advantages of tMCML
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Experiments

• Discussion: Importance of Pre-training
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Conclusion

• Microblog Dimensionality Reduction

• Deep networks-based model

• Semantic relatedness: retweet, #hashtags

• Future Work

• Representations towards specific microblog mining tasks (e.g. 

sentiment classification)

• Other types of meta-information in microblogs (e.g. embedded links)
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