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INTRODUCTION
Directions-of-arrival (DoA) estimation − Locating, with high resolution,
closely-spaced DoAs with few snapshots.

Conventional DoA estimators:

• Parametric methods

• Maximum Likelihood Estimator, MUSIC, ESPRIT, Matrix Pencil

Sparse model DoA estimator:

• Exploit sparsity in the model and discretize the search domain on
grids

• Solve L1 norm minimization problem

• Problem with off-grid DoAs

Continuous-domain viewpoint

• Use the super-resolution theory to provide a continuous-valued
paramter gridless recovery method

• Solve a Total Variation norm minimization for a complex measure

• Objective: Promote group-sparsity in the super-resolution frame-
work

SYSTEM MODEL
DoA estimation problem− Covariance model

• Single measurement vector (SMV): K signals received by a linear ar-
ray withM sensors, the observed measurement at time t is

y(t) =
K∑
k=1

xk(t)g(θk) + n(t) = Gx(t) + n(t) (1)

– Uncorrelated signal xk(t) ∼ (0, σ2
k)

– g(θk) ∈ CM×1 withm-th entry e−j2π
dm
λ
sinθk

– Multiple measurement vector (MMV):

Y = [y(1), . . . ,y(T )] = GX + N, T > 1

• The covariance matrix of observed vectors

R̃ = E[yy
H

] =

K∑
k=1

σ
2
kg(θk)g(θk)

H
+ σ

2
I (2)

• In reality, we compute R =
∑T
t=1 y(t)y(t)H/T as

R =

K∑
k=1

σ
2
kg(θk)g(θk)

H
+ V. (3)

SUPER-RESOLUTION THEORY
The super-resolution theory [1, 2]

• Consider a continuous signal s(τ), τ ∈ [−1, 1] is

s(τ) =
K∑
k=1

akδτk , (4)

– ak is complex-valued, and δτk is a Dirac measure at τk .

– Denote data vector s = [a1, . . . , aK ]T .

SUPER-RESOLUTION THEORY

• The Fourier transform of s(τ) is

r(n) =

∫ 1

−1

e
−j2πnτ

s(dτ) =
K∑
k=1

ake
−j2πnτk , n = −fc, ..., fc

• With arbitrary noise e, we have r = Fs + e, where F denotes
the linear operator to measure the 2fc + 1 lowest frequency coef-
ficients.

Total Variation (TV) norm minimization

• For a complex meaure on a Borel set B ∈ B(T). TV norm is de-
noted by

‖s‖TV = sup
∞∑
k=1

|s(Bk)| (5)

• Solve a convex optimization problem

min
s
‖s‖TV s.t. ‖Fs− r‖2 ≤ ε. (6)

THE PROPOSED METHOD
Reformulation of the Spatial Covariance Model − Recast the covariance
model into a MMV-like one

• Instead of vectorizing equation (3), we have

R = [r0, r1, . . . , rM−1] = σ
2
1Ḡ(θ1) + · · ·+ σ

2
KḠ(θK) + V,

where g(θk)g(θk)H = Ḡ(θk) is a Toeplitz matrix expressed by
Ḡ(θk) = [a0(θk), a1(θk), . . . , aM−1(θk)] ∈ CM×M .

• Then, we have

rl = σ
2
1al(θ1) + · · ·+ σ

2
Kal(θK) + vl =

∑
k

σ
2
kal(θk) + vl,

= Alp + vl, ∀l = 0, . . . ,M − 1 (7)

where Al = [al(θ1), . . . , al(θK)] ∈ CM×K , p =

[σ2
1 , . . . , σ

2
K ]T ∈ RK×1.

• Thus, R is rewritten as

R = [A0p,A1p, . . . ,AM−1p] + V, (8)

• In ULA, al(θk)= [e−j(−l)ξk , . . . , e−j(M−1−l)ξk ]T ∈ CM×1,
∀l = 0, . . . ,M − 1, where ξk = d

λ 2πsinθk .

CONTINUOUS GROUP-SPARSITY
Extend the SR theory from SMV to MMV-like system

• Extend a continuous signal into the MMV space by

s(τ ; t) =
K∑
k=1

bktδτk , t = 1, . . . , T (9)

– bkt is complex-valued at time t

– Denote T = {τk}Kk=1 as the support set.

– Denote S = [s1, . . . , sT ] where st = [b1t, . . . , bKt]
T .

CONTINUOUS GROUP-SPARSITY

• Similarly with noise et, and by FT, we have

r
t
sr = Fs(τ ; t) + e

t
, ∀t = 1, . . . , T (10)

Block Total Variation (BTV) norm

• By using multiple measurements for a complex meaure, we denote

‖s‖TV,p = sup
∞∑
k=1

‖s(Bk; :)‖p. (11)

‖s(Bk; :)‖p = (
∑T
t=1 |s(Bk; t)|p)1/p and s(Bk; t) = bk,t.

• min ‖s‖TV,p ⇐⇒ min ‖S‖1,p =
∑
k ‖Sk,:‖p

BTV-NORM MINIMIZATION
Fit DoA estimation problem in the group-sparsity framework:

Letting τk = sin(θk), t = l, T = M − 1, and fc = (M − 1)/2, we have

rlsr = Fls(τ ; l) + el = Alp + vl = rl, l = 0, . . . ,M − 1.

• Propose theBTV norm minimization problem

min
s
‖s‖TV,1 s.t.

M−1∑
l=0

‖Fls− rl‖2 ≤ ε. (12)

Theorem 1 extended from [2]. Let T = {τk}Kk=1 as the support set. If the
minimum distance ∆(θ) obeys

∆(θ) = inf
τi,τj∈T

|τi − τj | ≥
4

fc

λ

d
,

then the high resolution detail of continuous signal s can be recovered with high
probability by solving block total variation norm minimization problem (12).

• To estimate the support set, we derive the dual form of (12)

max
U

Re{< R,U >} − ε‖U‖F (13)

s.t.
[

Ql ul
uHl 1

]
� 0, ∀l = 0, . . . ,M − 1

M−j∑
i=1

Q
l
i,i+j =

{
1, j = 0,

0, j = 1, 2, . . . ,M − 1
,

where Ql ∈ CM×M is a Hermitian matrix, ∀l.

Lemma 2 Let sest and ul,est be a pair of primal-dual solutions to (12) and
(13). Then

(F∗l ul,est)(τ) = sign(sest(τ ; l)), ∀τ ∈ T s.t. sest(τ ; l) 6= 0.

• Perform the root finding on the |(F∗l ul,est)(τ)|2 = 1, ∀l, to get
the estimated support sets T lest = {τ lk,est}

K
k=1 and its union set

Test =
⋃
l T

l
est.

• Obtaining Gest by Test, we solve

X̂ = arg min
X

1

2
||Y −GestX||2F + γ||X||2,1,

where ||X||2,1 =
∑|Test|
k=1 ‖Xk,:‖2, and Xk,: denotes the kth

row of X.

NUMERICAL RESULTS

(a) RMSE of DoA estimation vs SNR for the case of uncorrelated sources.

(b) RMSE of DoA estimation vs SNR for the case of correlated sources.

ULA of 9 sensors, 2 sources with DoA sin(θ) = [0.2165251, 0.4665251],
correlation coefficient= 0.9, T = 100

SUMMARY

• Reformulated the covariance model.

• Proposed an BTV norm minimization.

• Robust performance of SR-BTV compared wtih MUSIC and ANM-
MMV [3] in cases of uncorrelated and correlated sources.
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