Directions-of-arrival (DoA) estimation — Locating, with high resolution,
closely-spaced DoAs with few snapshots.

Conventional DoA estimators:

e Parametric methods

e Maximum Likelihood Estimator, MUSIC, ESPRIT, Matrix Pencil
Sparse model DoA estimator:

e Exploit sparsity in the model and discretize the search domain on
grids

e Solve L; norm minimization problem
e Problem with off-grid DoAs
Continuous-domain viewpoint

e Use the super-resolution theory to provide a continuous-valued
paramter gridless recovery method

e Solve a Total Variation norm minimization for a complex measure

e Objective: Promote group-sparsity in the super-resolution frame-
work

SYSTEM MODEL

DoA estimation problem — Covariance model

o Single measurement vector (SMV): K signals received by a linear ar-
ray with M sensors, the observed measurement at time ¢ is

y(t) = > xx(t)g(dr) +n(t) = Gx(t) +n(t) (1)
k=1

— Uncorrelated signal =, (¢t) ~ (0, o 13)

dm

- g(0,) € CM*1 with m-th entry e I2T X sinO
— Multiple measurement vector (MMV):
Y = [Y(l),...,Y(T)] =GX+N,7T >1

e The covariance matrix of observed vectors

~

K
R=Elyy'|=>_ 0.80k)g0k)" +0°I (2)
k=1

e In reality, we compute R = 23;1 y(t)y(t)? /T as

K
R =) 0,g(0r)g®r)" +V. ©
k=1

SUPER-RESOLUTION THEORY

The super-resolution theory [1, 2]

e Consider a continuous signal s(7), 7 € [—1, 1] is

K
s(t) = > ardr, (4)
k=1
— ay is complex-valued, and 5Tk is a Dirac measure at 7.
— Denote data vector s = [a1,...,ax]".
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e The Fourier transform of s(7) is

1 , K .
r(n) = / e 7T s(dr) = Y ape TR n = —f, ..., fa
—1 k=1

e With arbitrary noise e, we have r = Fs 4 e, where F denotes
the linear operator to measure the 2 f. 4 1 lowest frequency coet-
ficients.

Total Variation (TV) norm minimization

e For a complex meaure on a Borel set B € B(T). TV norm is de-
noted by

Isllzv = sup ) _ |s(Bx) (5)
k=1

e Solve a convex optimization problem

msin Is||Tv st ||Fs—rl|z <e. (6)

THE PROPOSED METHOD

Reformulation of the Spatial Covariance Model — Recast the covariance
model into a MM V-like one

e Instead of vectorizing equation (3), we have

R =[ro,r1,...,v0—1] =0.G01) + -+ 0G(0x) + V,

where g(0)g(0x)" = G(0%) is a Toeplitz matrix expressed by
G(9k> — [a()(ek), ai (Qk), ce ,aM_l(Qk)] c CMXM.

e Then, we have

r,=cra;(01)+ - +ona(0x)+ v, = ZOZaZ(Qk) + vy,
k
=Ap+v,Vi=0,.... M —1 (7)
where A; = [a;(61),...,a;(0rx)] € CM*XE p =
02, o2]T e REX1.
e Thus, R is rewritten as
R =[Aop, A1p,.. ., Am—1P] +V, (8)
e INULA, a;(0;)= [e 7"V . eI (M=1=D& T ¢ M X1

Vi=20,...,M — 1, where &, = %ZWSinek.

CONTINUOUS GROUP-SPARSITY

Extend the SR theory from SMV to MM V-like system

e Extend a continuous signal into the MMV space by

K
S(T;t):ZbktcSTk,t:l,...,T 9)
k=1

— byt is complex-valued at time ¢

— Denote 7 = {71 };—_, as the support set.

T

— Denote S = [s1,...,s7]| wheres; = [b1¢,...,bk¢
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e Similarly with noise el and by FT, we have

r' = Fs(r;t)+e,Vt=1,...,T (10)

Block Total Variation (BTV) norm

e By using multiple measurements for a complex meaure, we denote

Isllzv,p = sup > [s(Br;:)llp- (11)
k=1

Is(Br; )llp = (31 |s(Bi; ¢)|P)' /P and s(By; t) = by,

e min ||s|jrv,, <= min||S|l1., = >, ||Sk..

p

BTV-NORM MINIMIZATION

Fit DoA estimation problem in the group-sparsity framework:

Letting 7, = sin(0y),t =1, T = M —1,and f. = (M —1)/2, we have

rlsr:]:ls(T;l)—l—el:Alp—l—vl:rl, [=0,...,M — 1.

e Propose the BTV norm minimization problem

M—1

min ||s[|7v,1 st > Fis—rill2 < e (12)
[=0

Theorem 1 extended from [2]. Let T = {73 } 1, as the support set. If the
minimum distance A(0) obeys

A(Q): inf |T¢—Tj|2

4 A
T,i,TjET fcd’

then the high resolution detail of continuous signal s can be recovered with high
probability by solving block total variation norm minimization problem (12).

e To estimate the support set, we derive the dual form of (12)

max Re{< R, U >} — €||U||r (13)
l
s.t. {QH “l} ~0,Vl=0,...,M—1
u; 1

M — .
E:le.. )b a=0,
— g 0, j=1,2,.... M —1"

where Q! € CM*M ig a Hermitian matrix, VI.

Lemma 2 Let scst and g s+ be a pair of primal-dual solutions to (12) and
(13). Then

(]:l*ul,est>(7') = 5igN(Sest(T;1)), VT € Ts.t. sest(751) # O.

e Perform the root finding on the |(F; u; cs¢)(7)|? = 1, VI, to get
the estimated support sets T

est
. l
7-€St — Ul 7-est

. l K . .
= {7k est J x—1 and its union set

e Obtaining Gt by Tecst, we solve

N 1
X = argmin —|[Y — Ges X[ +7]1X]

2.1,

where || X||2,1 = Lzeist' X% .||2, and X . denotes the k*"

row of X.
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(a) RMSE of DoA estimation vs SNR for the case of uncorrelated sources.
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(b) RMSE of DoA estimation vs SNR for the case of correlated sources.

ULA of 9 sensors, 2 sources with DoA sin(6) = [0.2165251, 0.4665251],
correlation coefficient= 0.9, 7" = 100

SUMMARY

e Reformulated the covariance model.

e Proposed an BTV norm minimization.

e Robust performance of SR-BTV compared wtih MUSIC and ANM-
MMV [3] in cases of uncorrelated and correlated sources.
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