

SUPER-RESOLUTION DOA ESTIMATION VIA CONTINUOUS GROUP SPARSITY IN THE COVARIANCE DOMAIN

INTRODUCTION Directions-of-arrival (DoA) estimation – Locating, with high resolution, closely-spaced DoAs with few snapshots. • The Fourier transform of $s(\tau)$ is **Conventional DoA estimators:** • Parametric methods • Maximum Likelihood Estimator, MUSIC, ESPRIT, Matrix Pencil **Sparse model DoA estimator:** ficients. • Exploit sparsity in the model and discretize the search domain on Total Variation (TV) norm minimization grids • Solve L_1 norm minimization problem noted by • Problem with off-grid DoAs **Continuous-domain viewpoint** • Use the super-resolution theory to provide a continuous-valued • Solve a convex optimization problem paramter gridless recovery method • Solve a Total Variation norm minimization for a complex measure • **Objective:** Promote group-sparsity in the super-resolution frame-THE PROPOSED METHOD work model into a MMV-like one SYSTEM MODEL • Instead of vectorizing equation (3), we have **DoA estimation problem** – *Covariance model*

• *Single measurement vector* (SMV): *K* signals received by a linear array with M sensors, the observed measurement at time t is

$$\mathbf{y}(t) = \sum_{k=1}^{K} x_k(t) \mathbf{g}(\theta_k) + \mathbf{n}(t) = \mathbf{G}\mathbf{x}(t) + \mathbf{n}(t)$$
(1)

- Uncorrelated signal $x_k(t) \sim (0, \sigma_k^2)$
- $\mathbf{g}(\theta_k) \in \mathbb{C}^{M \times 1}$ with *m*-th entry $e^{-j2\pi \frac{d_m}{\lambda} \sin \theta_k}$
- *Multiple measurement vector* (MMV):

$$\mathbf{Y} = [\mathbf{y}(1), \dots, \mathbf{y}(T)] = \mathbf{G}\mathbf{X} + \mathbf{N}, T > 1$$

• The covariance matrix of observed vectors

$$\tilde{\mathbf{R}} = E[\mathbf{y}\mathbf{y}^{H}] = \sum_{k=1}^{K} \sigma_{k}^{2} \mathbf{g}(\theta_{k}) \mathbf{g}(\theta_{k})^{H} + \sigma^{2} \mathbf{I}$$
(2)

• In reality, we compute $\mathbf{R} = \sum_{t=1}^{T} \mathbf{y}(t) \mathbf{y}(t)^{H} / T$ as

$$\mathbf{R} = \sum_{k=1}^{K} \sigma_k^2 \mathbf{g}(\theta_k) \mathbf{g}(\theta_k)^H + \mathbf{V}.$$
 (3)

SUPER-RESOLUTION THEORY

The super-resolution theory [1, 2]

• Consider a continuous signal $s(\tau), \tau \in [-1, 1]$ is

$$s(\tau) = \sum_{k=1}^{K} a_k \delta_{\tau_k}, \qquad (4$$

- a_k is complex-valued, and δ_{τ_k} is a Dirac measure at τ_k .

- Denote data vector $\mathbf{s} = [a_1, \ldots, a_K]^T$.

CHENG-YU HUNG AND MOSTAFA KAVEH Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN USA

SUPER-RESOLUTION THEORY

$$r(n) = \int_{-1}^{1} e^{-j2\pi n\tau} s(d\tau) = \sum_{k=1}^{K} a_k e^{-j2\pi n\tau_k}, n = -f_c, ..., j$$

• With arbitrary noise \mathbf{e} , we have $\mathbf{r} = \mathcal{F}s + \mathbf{e}$, where \mathcal{F} denotes the linear operator to measure the $2f_c + 1$ lowest frequency coef-

• For a complex meaure on a Borel set $B \in \mathcal{B}(\mathbb{T})$. TV norm is de-

$$||s||_{TV} = \sup \sum_{k=1}^{\infty} |s(B_k)|$$
 (5)

$$\min_{s} \|s\|_{TV} \quad \text{s.t.} \quad \|\mathcal{F}s - \mathbf{r}\|_{2} \le \epsilon.$$
(6)

- **Reformulation of the Spatial Covariance Model** Recast the covariance

 - $\mathbf{R} = [\mathbf{r}_0, \mathbf{r}_1, \dots, \mathbf{r}_{M-1}] = \sigma_1^2 \bar{\mathbf{G}}(\theta_1) + \dots + \sigma_K^2 \bar{\mathbf{G}}(\theta_K) + \mathbf{V},$
 - where $\mathbf{g}(\theta_k)\mathbf{g}(\theta_k)^H = \mathbf{\bar{G}}(\theta_k)$ is a Toeplitz matrix expressed by $\bar{\mathbf{G}}(\theta_k) = [\mathbf{a}_0(\theta_k), \mathbf{a}_1(\theta_k), \dots, \mathbf{a}_{M-1}(\theta_k)] \in \mathbb{C}^{M \times \hat{M}}.$
 - Then, we have

$$\mathbf{r}_{l} = \sigma_{1}^{2} \mathbf{a}_{l}(\theta_{1}) + \dots + \sigma_{K}^{2} \mathbf{a}_{l}(\theta_{K}) + \mathbf{v}_{l} = \sum_{k} \sigma_{k}^{2} \mathbf{a}_{l}(\theta_{k}) + \mathbf{v}_{l},$$
$$= \mathbf{A}_{l} \mathbf{p} + \mathbf{v}_{l}, \forall l = 0, \dots, M - 1$$
(7)

where
$$\mathbf{A}_l = [\mathbf{a}_l(\theta_1), \dots, \mathbf{a}_l(\theta_K)] \in \mathbb{C}^{M \times K}$$
, $\mathbf{p} = [\sigma_1^2, \dots, \sigma_K^2]^T \in \mathbb{R}^{K \times 1}$.

• Thus, **R** is rewritten as

$$\mathbf{R} = [\mathbf{A}_0 \mathbf{p}, \mathbf{A}_1 \mathbf{p}, \dots, \mathbf{A}_{M-1} \mathbf{p}] + \mathbf{V}, \qquad (8$$

• In ULA, $\mathbf{a}_l(\theta_k) = [e^{-j(-l)\xi_k}, \dots, e^{-j(M-1-l)\xi_k}]^T \in \mathbb{C}^{M \times 1}$, $\forall l = 0, \dots, M-1$, where $\xi_k = \frac{d}{\lambda} 2\pi sin\theta_k$.

CONTINUOUS GROUP-SPARSITY

Extend the SR theory from SMV to MMV-like system

• Extend a continuous signal into the MMV space by

$$s(\tau; t) = \sum_{k=1}^{K} b_{kt} \delta_{\tau_k}, t = 1, \dots, T$$
(9)

- b_{kt} is complex-valued at time t
- Denote $\mathcal{T} = \{\tau_k\}_{k=1}^K$ as the support set.
- Denote $\mathbf{S} = [\mathbf{s}_1, \dots, \mathbf{s}_T]$ where $\mathbf{s}_t = [b_{1t}, \dots, b_{Kt}]^T$.

• Similarly with noise e^t , and by FT, we have

Block Total Variation (BTV) norm

 $||s(B_k;:)||_p =$

• min $||s||_{TV,p}$

BTV-NORM MINIMIZATION

Fit DoA estimation problem in the group-sparsity framework: Letting $\tau_k = sin(\theta_k)$, t = l, T = M - 1, and $f_c = (M - 1)/2$, we have $\mathbf{r}_{sr}^{l} = \mathcal{F}_{l}s(\tau; l) + \mathbf{e}^{l} = \mathbf{A}_{l}\mathbf{p} + \mathbf{v}_{l} = \mathbf{r}_{l}, \ l = 0, \dots, M - 1.$

minimum distance $\Delta(\boldsymbol{\theta})$ obeys

 $\Delta(\boldsymbol{\theta})$

then the high resolution detail of continuous signal *s* can be recovered with high probability by solving block total variation norm minimization problem (12).

s.t.
$$\begin{bmatrix} \mathbf{Q}^l & \mathbf{u}_l \\ \mathbf{u}_l^H & 1 \end{bmatrix} \succeq 0, \forall l = 0, \dots, M - 1$$
$$\sum_{i=1}^{M-j} \mathbf{Q}_{i,i+j}^l = \begin{cases} 1, & j = 0, \\ 0, & j = 1, 2, \dots, M - 1 \end{cases}$$

(13). *Then*

$$(\mathcal{F}_{l}^{*}\mathbf{u}_{l,est})(\tau) = sign(s_{est}(\tau;l)), \forall \tau \in \mathbb{T} s.t. \ s_{est}(\tau;l) \neq 0.$$

- $\mathcal{T}_{est} = \bigcup_l \mathcal{T}_{est}^l.$

 $\hat{\mathbf{X}} =$

where $||\mathbf{X}||_{2,1} = \sum_{k=1}^{|\mathcal{T}_{est}|} ||\mathbf{X}_{k,:}||_{2}$, and $\mathbf{X}_{k,:}$ denotes the k^{th} row of **X**.

CONTINUOUS GROUP-SPARSITY

$$\mathbf{r}_{sr}^{t} = \mathcal{F}s(\tau; t) + \mathbf{e}^{t}, \forall t = 1, \dots, T$$
(10)

• By using multiple measurements for a complex meaure, we denote

$$||s||_{TV,p} = \sup \sum_{k=1}^{\infty} ||s(B_k;:)||_p.$$
(11)

$$= \left(\sum_{t=1}^{T} |s(B_k;t)|^p\right)^{1/p} \text{ and } s(B_k;t) = b_{k,t}.$$
$$\iff \min \|\mathbf{S}\|_{1,p} = \sum_k \|\mathbf{S}_{k,:}\|_p$$

• Propose the BTV norm minimization problem

n
$$||s||_{TV,1}$$
 s.t. $\sum_{l=0}^{M-1} ||\mathcal{F}_l s - \mathbf{r}_l||_2 \le \epsilon.$ (12)

Theorem 1 extended from [2]. Let $\mathcal{T} = \{\tau_k\}_{k=1}^K$ as the support set. If the

$$\boldsymbol{\theta}) = \inf_{\tau_i, \tau_j \in \mathbb{T}} |\tau_i - \tau_j| \ge \frac{4}{f_c} \frac{\lambda}{d},$$

• To estimate the support set, we derive the dual form of (12)

 $\max_{\mathbf{U}} \operatorname{Re}\{\langle \mathbf{R}, \mathbf{U} \rangle\} - \epsilon \|\mathbf{U}\|_F$

where $\mathbf{Q}^l \in \mathbb{C}^{M \times M}$ is a Hermitian matrix, $\forall l$.

Lemma 2 Let s_{est} and $\mathbf{u}_{l,est}$ be a pair of primal-dual solutions to (12) and

• Perform the root finding on the $|(\mathcal{F}_l^* \mathbf{u}_{l,est})(\tau)|^2 = 1, \forall l$, to get the estimated support sets $\mathcal{T}_{est}^{l} = \{\tau_{k,est}^{l}\}_{k=1}^{K}$ and its union set

• Obtaining \mathbf{G}_{est} by \mathcal{T}_{est} , we solve

$$\arg\min_{\mathbf{X}} \frac{1}{2} ||\mathbf{Y} - \mathbf{G}_{est}\mathbf{X}||_{F}^{2} + \gamma ||\mathbf{X}||_{2,1},$$

NUMERICAL RESULTS

(b) RMSE of DoA estimation vs SNR for the case of correlated sources. ULA of 9 sensors, 2 sources with DoA $sin(\theta) = [0.2165251, 0.4665251]$, correlation coefficient= 0.9, T = 100

SUMMARY

(13)

- Reformulated the covariance model.
- Proposed an BTV norm minimization.
- MMV $[\bar{3}]$ in cases of uncorrelated and correlated sources.

BIBLIOGRAPHY

- [1] E. J. Candès and C. Fernandez-Granda, "Super-resolution from noisy 1229–1254, 2013.
- [2] —, "Towards a mathematical theory of super-resolution," Commu-2014.
- [3] Z. Yang and L. Xie, "Exact joint sparse frequency recovery via optimization methods," arXiv preprint arXiv:1405.6585, 2014.

• Robust performance of SR-BTV compared wtih MUSIC and ANM-

data," Journal of Fourier Analysis and Applications, vol. 19, no. 6, pp.

nications on Pure and Applied Mathematics, vol. 67, no. 6, pp. 906–956,