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Motivation

Challenge in machine learning applications
• Unlabeled data abundant
• Labels are expensive and scarce

Solution: Active semi-supervised learning
• Allow the learner to select the data points to be labeled
• Predict using the labels and inherent clustering in unlabeled data

Graph based formulation of active SSL
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Problem Definition

• Graph G = (V, E)
• Signal f : V → {+1,−1}
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Problem Definition

• Graph G = (V, E)
• Signal f : V → {+1,−1}
• Observe f on U ⊂ V
• Predict f on Uc

• How to find the smallest U?

When can we expect |U| to be less than |V|?

• Smoothness: strongly connected nodes will have similar signal
• Small cut size: very few edges with oppositely labeled endpoints compared
to the total number of edges
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Related Work

Global smoothness based sampling

Sample most informative nodes for good
signal estimation

– [Guillory and Bilmes ’11]
– [Ji and Han ’12]
– [Anis, G., Ortega ’14]

non-adaptive: sample all at once

Boundary refinement sampling

Sample in order to recover the
boundary nodes

– [Zhu, Lafferty, Ghahramani ’03]
– [Osugi, Kim, Scott ’05]
– [Dasarathy, Nowak, Zhu ’15]

adaptive: sample one by one

Which approach is better: depends on error tolerance/sampling budget
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Contributions

A new sampling algorithm: Weighted S2

• a boundary sampling approach

• generalization of S2 algorithm [Dasarathy, Nowak, Zhu ’15]

– S2 algorithm assumes an unweighted graph

– weights capture additional info. about node similarities
– weighted S2 exploits the information given by the weights

• sample complexity of weighted S2

Hybrid approach: begin with global approach then switch to boundary refinement
• idea is to accelerate the convergence of label prediction using boundary
refinement approach

• cutoff maximization [Anis, G., Ortega ’14] → weighted S2
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Motivation for Weighted S2

• Weighted S2 is a generalization of S2 algorithm [Dasarathy, Nowak, Zhu ’15]

• S2 algorithm works on unweighted graphs
• Finds cut edges by bisecting paths connecting two oppositely labeled nodes

i j1 2 3

• In ML, node i ⇔ xi ∈ Rd

• Weighted S2 takes into account lij = d(xi, xj) for edge (i, j)
• d(xi, xj) expected to be larger for cut edges than within class edges
• Bisection based on lij can find cut edges faster

i j1 2
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Weighted S2 Algorithm

i

j
lij

Given G = (V, E), Lengths l : E → R+

1. Random sample until two opposite labeled, connected nodes u, v are found

2. Find the shortest path between u and v

3. Bisection search: Find the cut-edge by successively sampling the nodes
closest to the midpoint of the path

4. Remove the cut-edge and repeat until all the cut-edges are found
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Sample Complexity of Weighted S2

Quantities to parametrize the complexity of cut induced by f

V1
V2

V3

C12 C23

• f partitions G into conn. comp.’s {Vi}
• Cut C into corresponding cut comp.’s {Cij}
• β ≈ balanced-ness of |Vi|’s
• m = number of cut components
• ln = max. shortest path length
• lcut = min cut edge length
• lκ ≈ max dist betn two cut edges in Cij

Theorem (Sample Complexity)

Weighted S2 recovers f with prob. > (1 − ϵ) if the sampling budget is at least

log(1/(βϵ))

log(1/(1 − β))︸ ︷︷ ︸
A : random sampling phase

+m
⌈

2 log2

(
ln

lcut

)⌉
+ (|∂C| − m)

⌈
2 log2

(
lκ

lcut

)⌉
︸ ︷︷ ︸

B : bisection search phase

8 / 18



Sample Complexity of Weighted S2

Quantities to parametrize the complexity of cut induced by f

V1
V2

V3

C12 C23

• f partitions G into conn. comp.’s {Vi}
• Cut C into corresponding cut comp.’s {Cij}
• β ≈ balanced-ness of |Vi|’s
• m = number of cut components
• ln = max. shortest path length
• lcut = min cut edge length
• lκ ≈ max dist betn two cut edges in Cij

Theorem (Sample Complexity)

Weighted S2 recovers f with prob. > (1 − ϵ) if the sampling budget is at least

log(1/(βϵ))

log(1/(1 − β))︸ ︷︷ ︸
A : random sampling phase

+m
⌈

2 log2

(
ln

lcut

)⌉
+ (|∂C| − m)

⌈
2 log2

(
lκ

lcut

)⌉
︸ ︷︷ ︸

B : bisection search phase

8 / 18



Sample Complexity of Random Sampling Phase

A =
log(1/(βϵ))

log(1/(1 − β))

f partitions G into similarly labeled connected components {V1, . . . , Vp}
• First sample in each Vi is obtained by random sampling
• A = # samples needed to sample at least one node from each Vi

1

V1

V2

V3

C12

C23

– β := min1≤i≤p |Vi|/|V|
– measures how balanced Vi’s are

– small β ⇒ more samples

– less likely to sample from small
component

1[Dasarathy, Nowak, Zhu ’15]
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Sample Complexity of Bisection Search

Consider a sub-problem:
l

lcut
i j

Lemma (Bisection search on a path)

Bisection search on path of length l discovers a cut edge of length lcut in no
more than

⌈
2 log2

(
l

lcut

)⌉
steps.

i ju v

l/2 l/2

• length of the path of interest is at least halved after two queries
• bisect until discovery of cut edge ∼ path of interest has length lcut

• number of samples = number of bisections
⌈

2 log2

(
l

lcut

)⌉
• more samples if l is large (longer path) and lcut is small (short cut edge)
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Sample Complexity of Bisection Search (contd.)

B = m
⌈

2 log2

(
ln

lcut

)⌉
︸ ︷︷ ︸

B1

+ (|∂C| − m)

⌈
2 log2

(
lκ

lcut

)⌉
︸ ︷︷ ︸

B2

Question: How many bisection searches and on what path lengths?

B1 : To discover the first cut edge (with length ≥ lcut) in each cut component
bisect paths of length ≤ ln

B2 : To discover the remaining cut edges (with length ≥ lcut) in each cut
component bisect paths of length ≤ lκ

Number of samples needed to recover f increases with
• number of boundary nodes |∂C| and number of cut components m
• graph diameter ln and distance between cut edges lκ
• shorter cut edges (i.e., small lcut)
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Experiment Setup

Graph construction: data {x1, . . . , xn} ⊂ Rd and distances d(xi, xj)

• G: unweighted, symmetric k-nn graph (with k = 4)
• Gd: same topology as G but edge-weights wij = d(xi, xj)

• Gs: same topology as G with wij = sim(xi, xj) . . . (↑ d ⇔ sim ↓)

Sampling algorithms

• Weighted S2 on Gd

• S2 on G [Dasarathy, Nowak, Zhu ’15]

• Cutoff maximization on Gs [Anis, G., Ortega ’15]

Label prediction from observed samples

• soft labels f̂ using bandlimited interpolation [Narang et al. ’13]

• threshold f̂ to get the final predictions
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Synthetic Data: Advantage of Weighted S2 over S2

1
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1

• 900 points (red) with f = +1 on inner circle
of mean radius 1 and var 0.05

• 100 points (blue) with f = −1 on outer
circle of mean radius 1.1 and var 0.45

• 4-nn graph using Euclidean distance in R2

n |C| |∂C| mean(lcut)
mean(lnon-cut)

Unweighted S2 Weighted S2 Cutoff

1000 129 160 4.0533 237 179.2 999

An illustration of advantage of weighted S2 (2 samples) over unweighted S2 (3 samples)
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Real World Data: Samples for Exact Recovery
USPS: handwritten digits

• xi ∈ R256 16 × 16 image

• sim(i, j) = exp
(
− ∥xi−xj∥2

2σ2

)
• d(i, j) = ∥xi − xj∥

Newsgroups: documents

• xi ∈ R3000 tf-idf of words

• sim(i, j) = x⊤i xj

∥xi∥∥xj∥

• d(i, j) =
√

1 − sim2(i, j)

Data n |C| |∂C| mean(lcut)
mean(lnon-cut)

UW. S2 W. S2 Cutoff Hybrid nswitch

7 v 9 400 154 180 1.1074 312.37 312.07 399 277 47

2 v 4 400 29 39 1.1183 49.13 48.37 394 76 38

B v H 400 255 235 1.0691 368.07 368.17 399 384 42

• Weights don’t help much (since lcut ≈ lnon−cut)
• Global approach (max cutoff) not good at recovering exact boundary
• But good at signal approximation with fewer samples
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Real World Data: Error vs. Number of Samples
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Baseball v. Hockey

• Fewer samples ⇒ cutoff max.

• More samples ⇒ weighted S2

• Hybrid: start with cutoff max. then
switch to weighted S2

• Switch at sample i

1 − ⟨f̂i , f̂i−1⟩
∥f̂i∥∥f̂i−1∥

< δ (⇒ f̂i = f̂i−1)
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Conclusion

• Weighted S2 algorithm: generalization of S2 to weighted graphs

• Analysis of sample complexity

• Demonstration of advantage of weighted S2 over unweighted S2

• Active learning approach given sampling budget / error tolerance:
– small budget / more error tolerance ⇒ global smoothness approach

(e.g., cutoff maximization)
– large budget / less error tolerance ⇒ boundary refinement approach

(e.g., weighted S2)

• Hybrid approach: best of both methods
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Appendix: Clustered-ness of the Cut

• e1, e2 ∈ C : δ(e1, e2) = dG−C(x1, x2) + dG−C(y1, y2) + max{le1 , le2}

e1

e2

x1

x2

y1

y2

e4

e3

m = 2, Let le = 1 ∀e

⇒

e1

e3

e4

e2

r < 5

e1

e3

e4

e2

r = 5

e1

e3

e4

e2

lκ = r = 7

• Hr(C, E): graph with nodes ↔ cut edges in G

for e1, e2 ∈ C : {e1, e2} ∈ E if and only if δ(e1, e2) ≤ r

• As r increases, number of connected components in Hr decreases
lκ = the smallest r for which Hr has m connected components

Larger lκ ⇒ need to bisect a longer path to get the next cut edge
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