High-Accuracy Indoor Localization: A WiFi-based Approach

Chen Chen, Yan Chen, Hung-Quoc Lai, Yi Han, K.J. Ray Liu

March 21, 2016

Department of Electrical and Computer Engineering University of Maryland, College Park, USA

GPS Fails Indoors

Signal blockage leads to severe attenuation.
Multipath environment causes error in timing.

Indoor Positioning

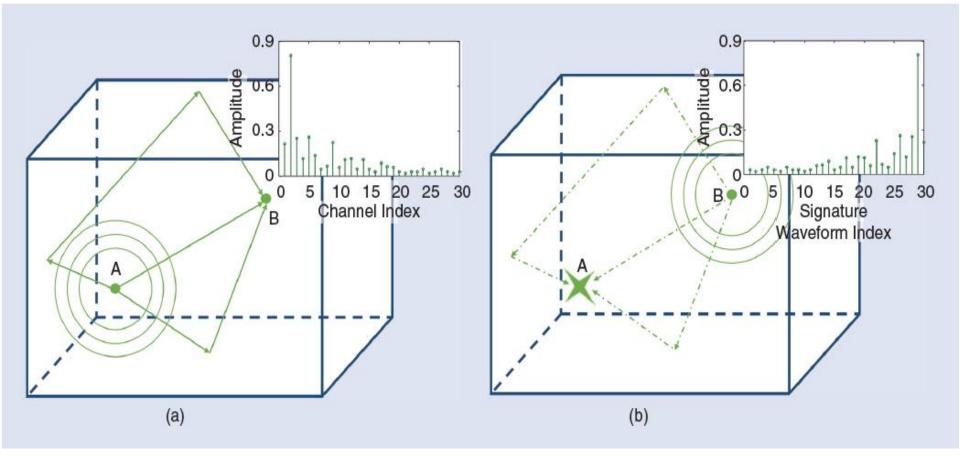
Indoor positioning systems have been developed for two decades with many approaches

RFID

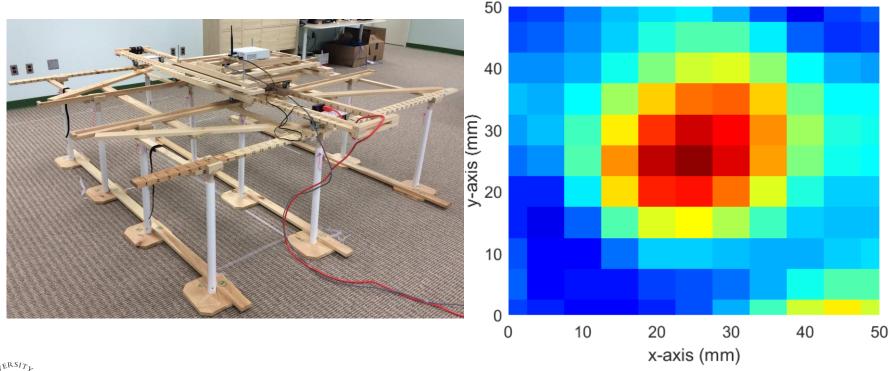
- Received Signal Strength
- Time-of-Arrival
- Angle-of-Arrival
- Magnetic Field

"The Indoor Location Problem is NOT Solved" *Microsoft Indoor Localization Competition: Experiences and Lessons Learned*, 2014

Motivations

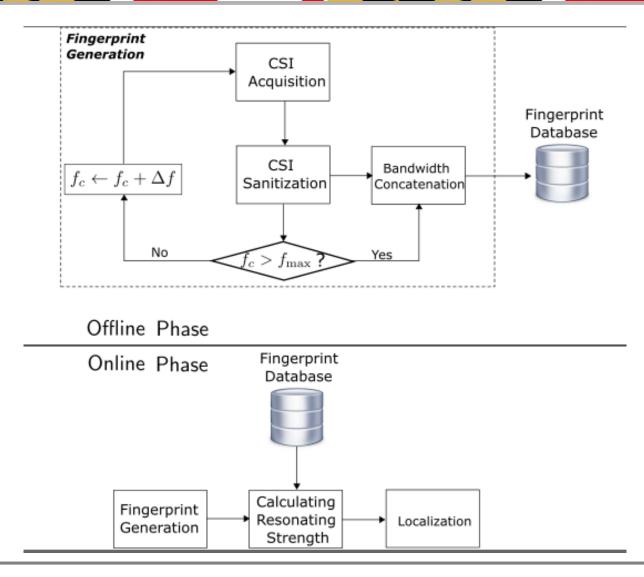

None of the existing positioning systems can

- * achieve centimeter-level accuracy
- w under non-line-of-sight (NLOS) conditions
- most with accuracy of 1m or more
- Is there any way that we can achieve centimeter-level accuracy under NLOS conditions?
- We propose to use the fundamental physical principle of time-reversal to answer this


What is Time-Reversal?

Time-Reversal Focusing Effect

Experiment results show that the time-reversal can achieve 1-2cm accuracy in indoor localization.

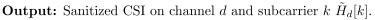


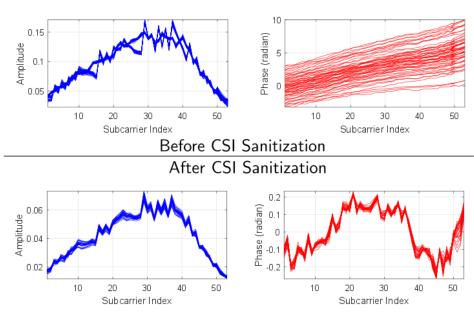
Large Effective Bandwidth

- Time-Reversal requires a large bandwidth for resolving the multipaths in the environment.
- Existing WiFi-based methods cannot achieve centimeter-level accuracy due to bandwidth limit.
 - Only 20MHz or 40MHz per channel
- We propose to create a large effective bandwidth by concatenating bandwidths from multiple channels.

Overview of Algorithm

CSI Sanitization

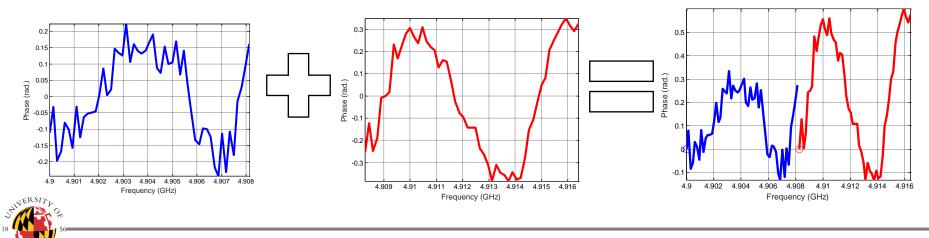

Channel State Information (CSI) is corrupted by Carrier frequency offset: additional initial phase shift Timing offset: additional linear phase shift


Input: CSI on channel d and subcarrier k for the first and second long trainin sequence, denoted as $H_d[k]$ and $H'_d[k]$ respectively.

- 1. Calculate $\Phi_d[k] = \measuredangle \{H_d^*[k]H_d'[k]\}$
- 2. Calculate $\overline{H}_d[k] = H_d[k] \exp(-j\frac{3\pi}{2}\Phi_d[k]), \ \overline{H}'_d[k] = H'_d[k] \exp(-j\frac{5\pi}{2}\Phi_d[k])$
- 3. Calculate $\tilde{H}_d[k] = \frac{\overline{H}_d[k] + \overline{H}'_d[k]}{2}$
- 4. Calculate $A_d[k] = \measuredangle \left\{ \tilde{H}_d[k] \right\}$
- 5. Unwrap $\{A_d[k]\}_{k=0,1,\cdots,51}$ into $\{A_d'[k]\}_{k=0,1,\cdots,51}$

6. Calculate
$$\xi_d = \frac{64\sum_{k=0}^{51} [k - \frac{51}{2}] [A'_d[k] - \overline{A}_d]}{2\pi \sum_{k=0}^{51} [k - \frac{51}{2}]^2}$$
, where $\overline{A}_d = \frac{\sum_{k=0}^{51} A'_d[k]}{52}$

7. Compensate $\tilde{H}_d[k]$ as $\underline{H}_d[k] = \tilde{H}_d[k] \exp\left(-j\frac{2\pi k}{N}\xi_d\right)$


Bandwidth Concatenation

We form the localization fingerprint by concatenating all sanitized CSIs from different channels.

Input: $\underline{H}_d[k]$ for all channel d and subcarrier k.

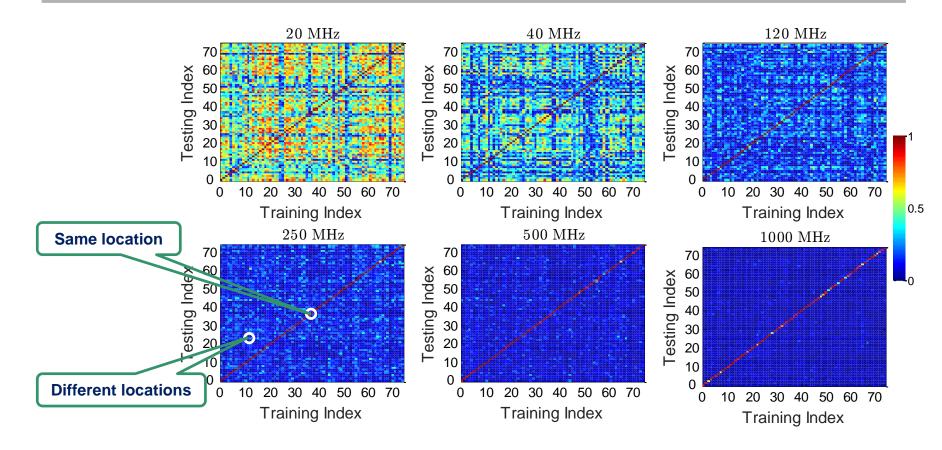
- 1. $G_d[k] = \underline{H}_d[k] \exp(-j\measuredangle \{\underline{H}_d[0]\}), \ \forall d, \ \forall k$
- 2. $\mathbf{G} = \begin{bmatrix} G_1[0] & G_1[1] \cdots & G_1[51] & G_2[0] & \cdots & G_D[51] \end{bmatrix}^T$

 $\mathbf{Output:} \ \text{localization fingerprint } \mathbf{G}.$

Localization

Input #1: localization fingerprint $\{\mathbf{G}_{\ell}\}_{\ell=1,2,\cdots,L}$ from all *L* locations-of-interest. Input #2: localization fingerprint $\mathbf{G}_{\ell'}$ from an unknown location ℓ' .

• Calculate the maximum of the resonating strength given by


$$\Phi[\ell'] = \max_{\ell=1,2,\cdots,L} \left| \frac{\mathbf{G}_{\ell}^{\dagger} \mathbf{G}_{\ell'}}{||\mathbf{G}_{\ell}||_{2} ||\mathbf{G}_{\ell'}||_{2}} \right|^{2}$$

- If $\Phi[\ell'] \ge \gamma$ where γ is a threshold, then localize ℓ' to the ℓ that maximizes $\Phi[\ell']$.
- If $\Phi[\ell'] < \gamma$, then consider ℓ' as an unmapped location.

Output: Estimated location ℓ' .

Experiment Results

The confusion matrices (with resonating strengths as elements) of 5cm sampling from the testbed.

Conclusion

This work is the first to

- use time-reversal for indoor localization, and
- achieve centimeter-level accuracy under NLOS conditions.
- The proposed novel bandwidth concatenation algorithm forms a large effective bandwidth to enable centimeter-accuracy.
- It is based on standard WiFi devices, therefore with ubiquitous applications potential.

