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Introduction

Introduction

@ Higher brain functions depend on the balance between local
specialization (functional segregation) and global integration
(functional integration) of brain processes (Friston, 2011; Friston,
2001; Le Van Quyen, 2003; Stam, 2005; Tononi et al., 1998).

@ Imaging neuroscience (EEG, MEG, fMRI) has firmly established
functional segregation as a principle of brain organization in
humans.

@ The integration of segregated areas has proven more difficult to
assess.

@ Therefore, there is a need to identify task-related interactions
between neuronal populations.
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Introduction

Functional Connectivity

@ Cognitive control processes are
responsible for goal or context
representation and maintenance,
attention allocation and
stimulus-response mapping.

@ In particular, for cognitive control:

» Medial prefrontal cortex (mPFC) and
lateral prefrontal cortex (IPFC) play
an important role.

» Synchronization connects anterior
cingulate cortex (ACC) and IPFC
(Womelsdorf et al. 2014, Current
Biology).

@ Impaired cognitive control plays a role
in schizophrenia, impulse control and

anxiety disorders.
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Introduction

Dynamic Functional Connectivity Networks

@ Functional connectivity networks transition through
quasi-stationary microstates over time (Lehmann et al. 1997).
@ Current Approaches to network state representations:
» Sliding window FC analysis (Chang and Glover, 2010)
» k-means clustering (Allen et al. 2012)
» Principal Component Analysis (Leonardi et al. 2013)
@ Shortcomings: The intrinsic *
network structure is not
preserved: Averaging,
Vectorizing.

@ Our solution: Tensors are
used to represent and
summarize functional e
connectivity networks. ol . o
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Time-Frequency Phase Synchrony

Functional Connectivity: Phase Synchrony

@ Reduced-interference Rihaczek distribution (RID-Rihaczek):

Ci(t,w) = ffexp(f(

—_—
Choi-Williams kernel Rinaczek kernel

2 .
) ) exp(j%T) Ai(0,7)e? ) drdg. (1)
N——

» Ambiguity function: A;(0,7) = [ si(u+%)s; (u-3)e’“du.
@ The phase distribution: ®;(t,w) = arg[‘g;g’zg‘].
° The phase difference between the two signals can be defined as:

° Phase Iocklng value (PLV) quantifies the functional integration, as:

1 L
PLV(,-,,-)(t,w):Zl;ex ( of ) (t, w))‘, 0<PLV<1. (2




Time-Frequency Phase Sync

Construction of d-FCNs

@ Functional connectivity matrix:

1 @
Gs (i) (1) = ) >, PLV; i jy(tw), (3)

w=wa

» Gjj)(t) € [0,1], [wa,wp]: frequency band of interest, Q: the number
of frequency bins, s: the subject.

D Dec2015  9/24



Tensor Subspace Analysis

Outline

e Tensor Subspace Analysis



Tensor Subspace Analysis

Overview of tensors

@ The extension of vectors and matrices to higher dimension is
called multiway array, or tensor.

@ X e RM*M2X.xMd g g d-way tensor, where Xx;,
(1,2, I3, ..., Ig)th element.

@ Collection of the FC matrices of all subjects, Gs(t), forms
g(t) c RNXNXS'
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Tensor Subspace Analysis

Tucker Decomposition

@ Tucker Decomposition is flexible in representing higher order data,
and has orthogonal component matrices.

@ Tucker decomposition is calculated using alternative least square
(ALS) method.

Tucker decomposition of X’ ¢ R *M2x.--xMd

X =Cx1UMD U@ x,U® | x U@ 4 g,
1 2 3 d
X = ZA iz Ci1’i2»i37~~~:id (ul(1 ) o u’(z ) o ul(.3 ) 0...0 u’(d )) + 5,'1’,'2’,'3,.“,,'(1,

(4)

» C e R*2x---*1d jg the core tensor.
» UMD e Rmxn Y@ e Rmexr - Y@ ¢ RMaxra,
» £ e RMxm2x...xMa ig the residual.
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Tensor Subspace Analysis

Tucker Decomposition
continued
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Figure: Tucker decomposition for a 3-way tensor.

n—-mode product

n—mode product is multiplying the tensor unfolded along the nth mode
by a matrix.
X xpU=UX =3 X i oig Ui (5)
in
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Figure: Functional connectivity state summarization algorithm flowchart.



State Representation Subject Summarization

Subject Summarization
@ G(t) e RN*N*S within the time interval t = 1,2,..., T is fully
decomposed using Tucker decomposition:
G(1) =C(t) x4 UV (1) x2 UB (1) g U (2). (6)

@ Let’s define:
C(t) =C(1) x UMD (1) xo UB () > G(1) = ((1) xa U (1).

@ The subtensor 0(t) e RV*N captures most of the energy of the
activation patterns across subjects at time:

S 3
0(1) = C-1(1) = Y US) (DGs(1). (7)

s=1
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State Representation Time Summarization

Time Summarization

@ (1), Vte{1,2,--, T} are summarized across time mode to derive
the state connectome.

@ The 3-way tensor © e R is constructed from 6(t), and fully
decomposed using Tucker decomposition:

NxNxT
@:19><1 U(1) X9 0(2) X3 U(S) :5X3 U(S) (8)

@ The subtensor n = C,s 1= Zt 1 U( )@ _t captures the largest
amount of energy across all t|me steps



State Representation Time Summarization

Significance Testing

@ The significant edges of 7 is
determined through hypothesis
testing.

@ A Gaussian distribution for the edge
values in 7 is assumed.

@ This assumption can be validated
using Kolmogorov—Smirnov test.

03 02 o1
Edge Weight

@ z-test is used on the edges of n to

determine the most significant edges. Figure: The histogram of the
projected tensor edge values

Ho: 1(i,j) ~ Ne(terp: oerp) in the matrix n for ERN.
Hi: n(ij) ~Ni(u # Herp, 01 # Oerp)
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Experimental Results

EEG Data

@ Error-Related Negativity (ERN) occurs
50-100ms after subjects made errors in
response to a speeded motor task.
Modified Eriksen flanker task for 2 seconds
with multiple trials (10-40 error trials per
subject).

91 subjects, 63 electrodes collected from
undergraduates at the University of
Minnesota.

Sampling rate: 128 Hz.

ERN is dominated by partial phase-locking
of intermittent theta band (3-7 Hz) EEG
activity between mPFC and IPFC (Cavanagh
et al., 2009).
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Experimental Results

ERN: Time interval (0,100)ms CRN: Time interval (0,100)ms

Figure: The most significant edges of the network summarization matrix, »
with p = 0.95 for: (a) ERN, (b) CRN.



Experimental Results

Experimental Results
Discussion

@ ERN time interval:

» Increased connectivity in medial- prefrontal regions, engaging
electrodes (F1, Fz, F2, FC1, FCz, FC2) — Engagement of these
regions during the ERN.

» Sparse connections from right lateral frontal to parietal and occipital
regions.

@ CRN time interval:
» Connectivity between right lateral frontal and left-temporal regions.
» Strong connections between left lateral frontal and parietal region.
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Conclusion and Future Work

Summary

@ We proposed a tensor based method for data reduction of
dynamic functional connectivity matrices across subjects.

@ Tensor-tensor projection along both directions can be used to
summarize the connectivity within different time intervals.

Future Work

@ Detect the change points instead of using a priori information to
define time intervals.

@ Extend this work to include the frequency information as the 5th
mode of the tensor.
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