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MOTIVATION
In many computer vision applications, peo-

ple often have images of the same scene but ob-
tained from different focus distances, and conse-
quently the fusion techniques among the multi-
focus source images are required.

This is an important and difficult problem be-
cause:

1. Limited depth of field in optical lenses of
conventional cameras;

2. High cost of specialized optic sensors;
3. Traditional methods suffer from undesir-

able artifacts.

CONTRIBUTION
A novel algorithm for training the dictionary

pairs is proposed so as to fuse multi-focus im-
ages. Given the pair of training images, we seek
the best possible sparse representations for the fo-
cused and blurred categories of images.

Major contributions are:
1. Formulation as a multi-focus image fusion

problem based on sparsity over a couple of
dictionaries;

2. The K-SVD-based coupled dictionary train-
ing algorithm;

3. Fusion rule via coupled dictionary training.
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CONCLUSION AND FUTURE WORK

Conclusion:
(i) A novel multi-focus image fusion approach via
jointly training the coupled dictionary;
(ii) An effective and accurate fusion rule for esti-
mating these representations.

Future work:
(i) Improve the efficiency of the coupled dictio-
nary training;
(ii) Extend the fusion model to different types of
fusion applications.

METHOD

− Coupled dictionary training
Separate the problem into two sub-problems, namely dic-

tionary update and sparse coding update. Two main steps:
(i) Atoms of the coupled dictionaries DF and DB are alter-
nately updated by the sparse representations:
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(ii) Joint sparse coding Γ is given by fixing coupled dictionaries:
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− Image fusion from sparsity
(i) Collect two sparse representations

{
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}
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to the couple of dictionaries
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}
.

(ii) Define the fusion algorithm based on plain averaging and
“choose-max” rule:

A←argmax
i6=j

(Ai,Aj) ; Ai,Aj ∈{Ak =
AF

k +AB
k

2
, ∀16k 6 N}.

(iii) Generate an all-in-focus image IF by sparse reconstruction
with DF and A:

min
A
‖A‖1 s.t. IF = DFA.

RESULTS

From left-top to right-bottom: The first source image with focus on the left. The second source image with focus on the right.
Fused images obtained by LP [1], MWG [2], DWT [3], NSCT [4], PCA [5], SRM [6], SRK and the proposed method.
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Measures Methods
LP MWG DWT NSCT PCA SRM Ours

QMI 0.9083 0.9045 0.8991 0.9245 0.9381 0.9276 0.9432
QAB/F 0.6879 0.7243 0.7013 0.7185 0.6620 0.7214 0.7451

Experiments show that the proposed approach
well preserves the edge and structural informa-
tion of source images, and drastically reduces the
blocking artifacts and circle blurring.

The values of QMI and QAB/F range from 0 to
1, with 1 representing the ideal fusion. The bold
values are the best results in the corresponding
columns.

Both QMI and QAB/F slightly benefit from in-
creasing patch size. When the patch size increases
to 9, the running time begins to increase sharply.
The tolerance error slightly impacts on QAB/F .
When ε is larger than 2,QMI is drastically decreas-
ing.

In multi-focus image fusion, we can see that
our proposed method outperforms state-of-the-art
methods.


