DNN Approach to Speaker Diarisation Using Speaker Channels

Rosanna Milner and Thomas Hain

Machine Intelligence for Natural Interfaces
Speech and Hearing
University of Sheffield

Outline

- Introduction
- Background
- DNN approach using speaker channels
 - Fixed or mixed number of channels
 - System overview
- Experiments
 - Test Data
 - Setup
 - Evaluation
 - Results
- Conclusion

Introduction

Speaker diarisation - 'who speaks when'

- the 3 main tasks are SAD, speaker segmentation and speaker clustering
- **step-by-step**: performs stages separately
- **integrated**: performs some stages together

Typically unsupervised

- unsupervised: no prior knowledge or information
- **lightly/semi-supervised**: auxiliary information or metadata available
- supervised: prior knowledge about test data known

Presenting a semi-supervised integrated method using DNNs trained on concatenated IHM features

- semi-supervised: uses IHM speaker channels (instead of SDM)
- integrated: performs all three tasks together

Multi-channel Diarisation Approaches

- Single channel (SDM)
 - Segmentation, change detection and clustering
- How close are the channels to the speaker?
 - Associated speaker channels (IHM++)
 - Distant speaker channels (MDM)

Scoring Diarisation Output

- Diarisation Error Rate (DER)
 - Frame based metric
 - Collar changes reference
 - No penalty for data fragmentation
- Scoring
 - on individual channels IHM
 - very low number due to speaker prior!
 - on one 'global channel' SDM
 - based on true activity MDM
- Alternative scoring (Milner & Hain, ICASSP'16)

Previous Work

Multichannel diarisation

- beamforming focuses on speakers (Anguera et al. 2007)
- detecting closest speech and disregarding other speech (Dines et al. 2006, Wrigley et al. 2005)

DNNs for diarisation

- feature transforms using ANNs (Yella et al. 2014, 2015)
- DNNs trained for SAD (Dines et al., 2006, Milner & Hain, 2015)
- windowing segmentation method and clustering using AANNs (Jothilakshmi et al. 2009)
- Clustering by adapting speaker separation DNNs to specific recordings (Milner & Hain, 2016)

Approach

Approach: Using speaker assigned channels

Fixed number of chanels

- every recording must contain the same number of speaker channels, x concatenate x channels in all permutations: x! features per recording
- final layer in DNN is x+1, representing x speakers and NONSPEECH

Mixed number of channels

- recordings contain different number of speaker channels
- concatenate all pairs of channels: x(x 1) features per recording
- final layer in DNN is 3, representing 2 speakers and NONSUCH
- a speaker in label file but not in channel pair has NONSPEECH label

Both methods require every speaker having their own channel

Approach

Frame Decisions

Combinatorial Voting

- All combinations of feature concatenations used for testing
- results in multiple labels for every frame
- simply count occurrences and choose label which occurs most often
- additionally: apply a prior for NONSPEECH

Data - Meetings

- NIST RT'07 meeting data
 - NIST reference and manually transcribed reference (0.1 sec precision)
 - III44 segments, 35 speakers
 - 8 meetings
 - 6 meetings: 4 speakers, I meeting: 5 speakers, I meeting: 6 speakers

Improved manual reference on

http://mini.dcs.shef.ac.uk/resources/dia-improvedrt07reference/

Data: Talk Show Radio 4

- The Bottom Line BBC Radio4
- Topics in Economics
- 3 participants
- I interviewer (Evan Davis)

- manually transcribed reference
- 8749 segments, 40 speakers
- 12 train and 10 test programmes

Features and configuration

- Features
 - Log filterbank (23 coefs, 32 frames, compressed)
 - Cross talk features (Wrigley et al, 2006) normalised energy, kurtosis, mean/max cross correlation and differentials, 7 per channel
- DNN configurations
 - 2 hidden layers (1000 hidden units)
 - With cross talk features (31 frames)
 - trained with or without overlapping speech (OV) unqiue labels - TBL only - overlap 7.5%

Evaluation

Diarisation error rate

- DER=MS+FA+SE
- does not consider the segmentation quality so all tables show the number of detected segments

Two scoring settings

- NIST
 - collar 0.25s
 - score specified times only (UEM)
 - NIST provided reference (where possible)
- SHEF
 - collar 0.05s
 - score complete recordings
 - manually transcribed references

Baseline results

- LIUM SpkrDiarization (Rouvier et al., 2013)
 - tailored for TV and radio broadcasts
 - BIC segmentation with CLR and integer linear programming and i-vector clustering

Channel	#Segs	#Spkrs	NIST DER%	SHEF DER%			
	Data: TBL						
$\overline{\mathrm{SDM}}$	2030	82	16.6	27.8			
IHM	8478	40	393.9	335.9			
Data: RT07							
$\overline{\mathrm{SDM}}$	2648	72	40.1	66.4			
IHM	13070	35	308.1	371.0			

Crosstalk on channels which results in high false alarm

Channel	#Segs	#Spkrs	NIST DER%	SHEF DER%
ICSI - SDM	3082	54	21.7	66.2

Fixed Channel Experiments - TBL

- Only possible on TBL data
 - with or without overlap in training
 - with or without cross talk features

DNN			${ m MS\%}$	FA%	SE%	SHEF DER%
Train OV	CT	# Segs		$ \mathbf{I}^{T} \mathbf{A}^{T} / 0 $		
TBL x		6732	4.3	2.4	1.2	8.0
TBL x	X	7136	4.3	2.4	1.7	8.4
TBL		7269	4.3	2.5	1.5	8.3
TBL	X	2964	4.6	3.7	1.4	9.7

DNN TBL+OV gives lowest SHEF DER, crosstalk features do not help

Weight	#Segs	MS%	FA%	SE%	SHEF DER%
0.75	6594	4.3	2.6	1.3	8.2
0.5	6571	4.2	2.7	1.3	8.2
0.25	6569	4.2	2.8	1.4	8.3

Mixed Channel Numbers - I

Data	DNN		#Segs	MS%	FA%	SE%	SHEF DER%
	Train OV	CT	11 2 202	112070	11170	2	
	TBL x		8295	20.3	1.1	0.9	22.4
	TBL x	X	10551	34.8	0.7	1.1	36.5
TBL	TBL		8263	17.0	1.4	1.0	19.4
	TBL	X	7932	7.7	0.9	1.2	10.9
	AMI		10354	16.6	1.0	4.9	22.5
	AMI	X	7683	22.9	0.9	5.0	28.8
	TBL x		7979	60.9	0.8	0.4	62.1
	TBL x	X	4169	79.6	0.4	0.1	80.1
RT07	TBL		8430	56.5	1.2	0.4	58.2
	TBL	X	5993	59.7	1.3	0.2	61.2
	AMI		8791	58.9	0.5	0.1	59.5
	AMI	X	6873	62.4	0.5	0.1	63.0

- crosstalk features only improve for DNN for TBL
- including overlap in DNN training gives worse performance
- DNNs trained on AMI data do not perform as well as DNNs trained

on TBL data without overlap

University

Sheffield.

Mixed Channel Numbers - II

- applying a weight helps both datasets
- RT07 benefits the most with a large performance increase from 58.2%% to 23\% SHEF DER

Best results

Data	SHEF DER%	NIST DER%
TBL	9.2	5.7
RT'07	23.2	15.1

Conclusions

- presented two approaches for speaker diarisation using only IHM channels
- evaluated on two datasets: RT07 (meeting) and TBL (broadcast media)
- two methods for scoring: NIST and SHEF
- applying a nonspeech bias reduces error in mixed method
- training on OV benefits fixed method but not mixed
- CT only benefit DNN trained on TBL and tested on TBL
- Best result appears to be significantly better than best reported result on SDM

The End

Thank you.

