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| Introduction

Contributions in this paper:

» We propose an ESN-based algorithm to predict both the content
popularity and user mobility , thus determining which content to cache
and where to cache.

» A DQN-based dynamic decision optimization for request content delivery
is proposed with the channel state information and content transmission
delays regarded as criteria .

» We formulate a reward function by adjusting the weight coefficients to
tradeoff the overall optimization goals, and simulating the performance from
the perspective of D2D device and user, respectively.
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‘System model

The optimization goal is to maximize the cache hit rate(CHR) and reduce the
overall system’s transmission delay and the transmission power consumption.
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Algorithm implementation

Popularity Prediction
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Algorithm implementation

The update of the hidden layer state and the output layer state of ESN at time
t+1 can be expressed as :

the output layer of the previous
moment to the hidden layer of
the next moment

input layer matrix Hidden layer matrix
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The activation function | | output layer matrix | The concatenation of
of output layer neurons two vectors
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The prediction results of
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Algorithm implementation

Based on ESN to predict the content popularity and user’s mobility

Content popularity The prediction results of
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Algorithm implementation

The Establishment of ESN The network state set
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Fig. 1. Convergence performance of DQN-based
algorithm under different learning rates

Fig. 2. The delivery costs with different delivery
policies
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Conclusions

Conclusions

From our studies and simulation results, we can have the following observations.

@ CHR can be improved by selecting cache contents and cache
location based on the ESN’s prediction results of content
popularity and user’s mobility.

¥ DQN-based algorithm for dynamic decision-making of content
delivery can decrease the delay and power consumption.

@ Using different caching strategies for SBS to select caching
content can improve the cache hit rate of the CCN.
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